柔性光波導,顧名思義,是一種具有柔韌性和可延展性的光學元件。相較于傳統的剛性光波導,柔性光波導能夠在復雜多變的環境中保持穩定的性能,同時實現更靈活的光路布局和更高效的光信號傳輸。這種獨特的魅力,使得柔...
三維光子互連芯片通過引入光子作為信息載體,并利用三維空間進行光信號的傳輸和處理,有效克服了傳統芯片中的信號串擾問題。相比傳統芯片,三維光子互連芯片具有以下優勢——低串擾特性:光子在傳輸過程中不易受到電...
為了進一步提升三維光子互連芯片的數據傳輸安全性,還可以采用多維度復用技術。目前常用的復用技術包括波分復用(WDM)、時分復用(TDM)、偏振復用(PDM)和模式維度復用等。在三維光子互連芯片中,可以將...
相比于傳統的剛性電路板,柔性光路板在體積和重量上具有明顯優勢。其輕薄的特性使得FOCB在便攜式設備、航空航天以及高速移動設備等對重量和體積有嚴格要求的領域具有普遍的應用前景。在便攜式設備中,FOCB能...
剛性光波導的應用領域普遍,涵蓋了光通信、傳感、集成光學等多個方面。在光通信領域,剛性光波導作為光纖通信系統的關鍵組件,實現了光信號的高效傳輸和調制解調等功能。在傳感領域,剛性光波導則以其高靈敏度、高分...
隨著科技的飛速發展,生物醫學成像技術正經歷著前所未有的變革。在這一進程中,三維光子互連芯片作為一種前沿技術,正逐步展現出其在生物醫學成像領域的巨大應用潛力。三維光子互連芯片是一種集成了光子學器件與電子...
在制備3芯光纖扇入扇出器件時,通常采用多種特殊工藝和封裝方法。其中,熔融拉錐法是一種常用的制備方法。該方法通過高溫熔融光纖材料并拉伸成錐形結構,從而實現光纖之間的精確耦合。還可以采用模塊化封裝技術,將...
光傳感7芯光纖扇入扇出器件是現代光纖通信系統中不可或缺的關鍵組件,它們在復雜的光纖網絡中發揮著至關重要的作用。這些器件通過高度集成的結構設計,實現了7芯光纖的高效扇入與扇出功能,極大地提升了光纖網絡的...
隨著5G、物聯網以及人工智能等新興技術的快速發展,多芯光纖的應用前景愈發廣闊。在智慧城市的建設中,多芯光纖可以作為信息傳輸的神經中樞,將各個智能設備和系統緊密連接在一起,實現數據的實時共享和高效處理。...