金相顯微鏡擁有強大的高精度測量能力。借助先進的圖像分析軟件和高精度的光學系統,能夠對樣本中的微觀結構進行極其精確的測量。對于晶粒,可精確測量其直徑、面積、周長等參數,誤差可控制在微米甚至亞微米級別。在...
掃描電子顯微鏡的工作原理基于電子與物質的相互作用。當一束聚焦的高能電子束照射到樣品表面時,會與樣品中的原子發生一系列復雜的相互作用,產生多種信號,如二次電子、背散射電子、吸收電子、特征 X 射線等。二...
成像特點詳細解讀:3D 數碼顯微鏡成像效果出眾,具有高分辨率,能清晰呈現納米級微觀結構,在半導體芯片檢測中,可精細識別微小線路的寬度、間距等細節 。大景深是其又一明顯特點,保證不同高度的物體都能清晰成...
應用案例解析:在半導體芯片制造中,掃描電子顯微鏡發揮著關鍵作用。例如,在芯片光刻工藝后,利用 SEM 檢查光刻膠圖案的完整性和線條寬度,若發現線條寬度偏差超過 5 納米,就可能影響芯片性能,需及時調整...
原理探秘:掃描電子顯微鏡(SEM)的成像原理基于電子與物質的相互作用,極為獨特。它以電子束作為照明源,這束電子經過一系列復雜的電磁透鏡聚焦后,變得極為纖細,如同較精密的畫筆。隨后,聚焦后的電子束以光柵...
要有效地使用掃描電子顯微鏡,需要嚴格的樣品制備和精確的操作技巧樣品制備過程包括取樣、固定、脫水、干燥、導電處理等步驟,以確保樣品能夠在電子束的照射下產生清晰和準確的信號在操作過程中,需要熟練設置電子束...
成像模式詳析:掃描電子顯微鏡常用的成像模式主要有二次電子成像和背散射電子成像。二次電子成像應用普遍且分辨本領高,電子槍發射的電子束能量可達 30keV ,經一系列透鏡聚焦后在樣品表面逐點掃描,從樣品表...
工業 CT 的動態檢測功能為軌道交通領域帶來新的檢測手段。在模擬列車運行時的振動、沖擊等工況下,工業 CT 可對關鍵部件進行實時動態掃描。例如,對運行中的列車轉向架進行動態檢測,觀察其內部軸承、彈簧等...
技術前沿展望:當前,掃描電子顯微鏡技術前沿發展令人矚目。一方面,分辨率在不斷突破,新型的場發射電子槍技術和改進的電磁透鏡設計,有望讓 SEM 分辨率達到原子級水平,能夠更清晰地觀察原子排列等微觀結構。...
工業 CT 未來技術發展呈現多個趨勢。在硬件方面,探測器的分辨率和靈敏度將進一步提高,能夠檢測到更小的缺陷和更細微的結構變化。同時,X 射線源的功率和穩定性也將不斷提升,實現更快速、更精細的掃描。在軟...
定期性能評估維護是確保工業 CT 持續保持高精度檢測能力的關鍵。每隔一定周期,需使用標準測試樣本對設備的分辨率、對比度等性能指標進行測試。通過分析測試樣本的掃描圖像,評估設備對微小結構的分辨能力以及對...
定期性能評估維護是確保工業 CT 持續保持高精度檢測能力的關鍵。每隔一定周期,需使用標準測試樣本對設備的分辨率、對比度等性能指標進行測試。通過分析測試樣本的掃描圖像,評估設備對微小結構的分辨能力以及對...
工作原理深度剖析:3D 數碼顯微鏡的工作原理融合了光學與數字處理技術。從光學成像角度,它依靠高分辨率的物鏡,將微小物體放大,恰似放大鏡一般,使微觀細節清晰可辨。同時,搭配高靈敏度感光元件,精細捕捉光線...
設備選型要點:在選擇掃描電子顯微鏡時,分辨率是關鍵考量因素。如果用于納米材料研究,就需選擇分辨率達亞納米級別的設備,如場發射掃描電鏡,其分辨率可低至 0.1 納米左右,能清晰觀察納米結構細節 。放大倍...
與傳統顯微鏡對比:相較于傳統顯微鏡,3D 數碼顯微鏡優勢明顯。傳統顯微鏡通常只能提供二維平面圖像,而 3D 數碼顯微鏡能生成三維圖像,讓使用者更多方面了解樣品的形貌特征,比如觀察昆蟲標本,3D 數碼顯...
易用性設計貫穿于金相顯微鏡的各個方面。操作界面簡潔明了,各個功能按鍵布局合理,且具有明顯的標識和觸感反饋,方便用戶快速找到所需功能并進行操作。比如,對焦旋鈕的設計符合人體工程學,操作時手感舒適,轉動順...
在生物學研究中,掃描電子顯微鏡也扮演著舉足輕重的角色。它能夠為我們展現細胞表面的精細結構,如細胞膜的微絨毛、細胞間的連接結構;細胞器的形態和分布,如線粒體的嵴結構、內質網的網狀結構;微生物的形態特征,...
圖像拼接功能:圖像拼接是 3D 數碼顯微鏡的又一實用功能。當需要觀察大面積的樣品時,它可以拍攝多個局部圖像,然后通過軟件算法將這些圖像無縫拼接成一幅完整的大視野圖像 。在文物修復工作中,對大型壁畫進行...
3D 數碼顯微鏡數據處理功能:3D 數碼顯微鏡的數據處理功能極大地提升了工作效率。設備內置高性能處理器和專業圖像分析軟件,能快速對采集到的圖像數據進行處理。比如在分析細胞樣本時,軟件可自動識別細胞的輪...
樣品處理新方法:除了傳統的噴金、噴碳等處理方法,如今涌現出一些新穎的樣品處理技術。對于生物樣品,冷凍聚焦離子束(FIB)切割技術備受關注。先將生物樣品冷凍,然后利用 FIB 精確切割出超薄切片,這種方...
掃描電子顯微鏡的工作原理基于電子與物質的相互作用當電子束照射到樣品表面時,會激發產生多種物理現象和信號二次電子主要反映樣品表面的形貌特征,由于其能量較低,對表面的微小起伏非常敏感,因此能夠提供高分辨率...
在航空航天領域,金相顯微鏡對零部件質量把控至關重要。航空發動機的高溫合金葉片,通過金相分析檢測其晶粒大小、晶界狀態以及強化相的分布情況,確保葉片在高溫、高壓和高轉速的惡劣環境下具有足夠的強度和熱穩定性...
不同品牌新特性:各大品牌的掃描電子顯微鏡在持續創新中展現出獨特的新特性。蔡司推出的新型號配備了智能圖像識別系統,能夠自動識別樣品中的特征結構,并快速給出初步分析結果,較大提高了工作效率 。日立的新產品...
要有效地使用掃描電子顯微鏡,需要嚴格的樣品制備和精確的操作技巧樣品制備過程包括取樣、固定、脫水、干燥、導電處理等步驟,以確保樣品能夠在電子束的照射下產生清晰和準確的信號在操作過程中,需要熟練設置電子束...
使用工業 CT 后,圖像數據管理至關重要。每次檢測完成后,要及時對圖像數據進行分類存儲,建立詳細的數據庫。按照檢測時間、檢測對象、檢測目的等信息對圖像數據進行標注,方便后續查詢和分析。定期對圖像數據進...
在工業生產中,掃描電子顯微鏡是質量控制和產品研發的重要手段。在半導體制造行業,它可以檢測芯片表面的微觀缺陷、布線的精度和薄膜的厚度均勻性,確保芯片的性能和可靠性。對于金屬加工行業,SEM 能夠分析金屬...
掃描電子顯微鏡的工作原理基于電子與物質的相互作用當電子束照射到樣品表面時,會激發產生多種物理現象和信號二次電子主要反映樣品表面的形貌特征,由于其能量較低,對表面的微小起伏非常敏感,因此能夠提供高分辨率...
在追求高效節能的現代軌道交通領域,輕量化材料的應用日益普遍,工業CT在這方面發揮著關鍵檢測作用。鋁合金、碳纖維復合材料等輕量化材料用于制造車輛車身、座椅等部件,以降低列車自重,提高能源利用效率。工業C...
工業 CT 在成像速度方面具有明顯優勢。隨著技術的不斷進步,新一代工業 CT 配備了高速旋轉臺和高性能探測器,能夠在短時間內完成對物體的多方位掃描。對于小型零部件,一次完整的掃描過程可能需幾分鐘,大幅...
聯用技術拓展:掃描電子顯微鏡與其他技術的聯用范圍不斷拓展。和拉曼光譜聯用,在觀察樣品表面形貌的同時,獲取樣品的化學組成和分子結構信息。例如在研究碳納米材料時,通過這種聯用技術,既能觀察到碳納米管的形態...