我們現在看一個具體示例:圖3中,兩款示波器都已設置為800mV全屏顯示。8位ADC示波器的分辨率是3.125mV,即,800mV除以28(256個量化電平)。10位ADC示波器的分辨率是0.781mV,即,800mV除以210(1024個量化電平)。計算出來的分辨率又被稱作小量化電平,在正常采集模式下,是示波器能識別的信號小變化范圍。示波器通常支持高分辨率采集模式,在該模式下,要得到正確的信號,示波器的模擬前端要能夠防混疊,且采樣率遠大于實際需要的采樣率。也有的廠家采用過采樣技術配合DSP濾波器來提高示波器的垂直分辨率,然后給出一個指標,說高分辨率模式下,其位數是多少。以In?niiumS系列示波器為例,其ADC固有分辨率是10位,高分辨率模式下是12位。高分辨率模式要求ADC實際支持的采樣率遠高于被測信號測量所需的硬件帶寬。提升分辨率,可以選擇更高位數的ADC,同時示波器的垂直刻度選擇范圍要更寬。信號完整性問題及原因?校準信號完整性測試維修
數據中心利用發射系統和接收系統之間的通道,可以準確有效地傳遞有價值的信息。如果通道性能不佳,就可能會導致信號完整性問題,并且影響所傳數據的正確解讀。因此,在開發通道設備和互連產品時,確保高度的信號完整性非常關鍵。測試、識別和解決導致設備信號完整性問題的根源,就成了工程師面臨的巨大挑戰。本文介紹了一些仿真和測量建議,旨在幫助您設計出具有優異信號完整性的設備。
? 通道仿真? 確定信號衰減的根本原因? 探索和設計信號完整性解決方案? 信號完整性測量分析 江西信號完整性測試代理品牌克勞德高速數字信號測試實驗室信號完整性技術指標;
校正濾波器有些示波器的頻率響應完全是由其模擬前端濾波器決定的;另一些示波器的頻響則是由模擬前端和實時校正濾波器共同決定。實時校正濾波器通常是用硬件DSP實現的,并且會針對不同示波器家族略有調整,目的是保證幅度和相位響應是平坦的。由于不存在完美的模擬前端濾波器,所以將實時校正濾波器與模擬前端濾波器的組合使用,示波器的幅度和頻率相位響應更加平坦。在業內,較高質量的示波器一定會使用校正濾波器配合模擬前端濾波器,以保證頻響的平坦度。頻率響應的形狀通常借助其滾降特征來體現。磚墻式頻響受青睞,這是因為該頻響對帶外噪聲抑制力強。需要注意一種極端情況,即被測信號的邊沿速度很快,超過了示波器帶寬的測量能力時,磚墻式頻響測得的波形有可能伴有輕微的欠沖和過沖現象。使用高斯頻響的示波器來測量,顯示的振鈴會小很多,但缺點是帶外噪聲較大。
我們現在對比一下兩款示波器。小信號具有一定的幅度,當示波器垂直設置設為16mV全屏時,它會占據幾乎全屏的空間。Infiniium9000系列示波器等傳統示波器硬件支持的小刻度是7mV/格,低于該設置的垂直刻度,是用軟件放大實現的,7mV/格的設置意味著量程是56mV(7mV/格x8格),該示波器采用了8位ADC,量化電平數是256,因此其小分辨率為218uV。In?niiumS系列示波器采用了10位ADC,硬件支持的小垂直刻度是2mV/格,并且該設置支持滿帶寬。2mV/格設置對應的量程為16mV(2mV/格x8格),因此分辨率為16mV/1024,即為15.6uV—是傳統的8位示波器的14倍克勞德實驗室信號完整性測試軟件提供項目;
當今的電子設計工程師可以分成兩種,一種是已經遇到了信號完整性問題,一種是將要遇到信號完整性問題。對于未來的電子設備,頻率越來越高,射頻元器件越來越小,越來越集中化、模塊化。因此電磁信號未來也會變得越來越密集,所以提前學習信號完整性和電源完整性相關的知識可能對于我們對于電路的設計更有益處吧。對信號完整性和電源完整性分析中常常分為五類問題:1、單信號線網的三種退化(反射、電抗,損耗)反射:一般都是由于阻抗不連續引起的,即沒有阻抗匹配。反射系數=ZL-ZO/(ZL+ZO),其中ZO叫做特性阻抗,一般情況下中都為50Ω。為啥是50Ω,75Ω的的傳輸損耗小,33Ω的信道容量大,所以選擇了他們的中間數50Ω。下圖為點對電拓撲結構四種常用端接。 信號完整性測試設計重要性;廣西信號完整性測試檢查
信號完整性測試信號質量測試;校準信號完整性測試維修
信號完整性分析系列-第1部分:端口TDR/TDT如前文-單端口TDR所述,TDR生成與互連交互的激勵源。我們能通過一個端口測量互連上一個連接的響應。這限制了我們只關注反射回源頭的信號。通過這類測量,我們能獲得阻抗曲線和互連屬性信息,并能提取具有離散不連續的均勻傳輸線的參數值。在TDR上添加第二個端口后,我們就能極大地擴展測量類型以及能提取的互連信息。額外的端口可用來執行三種重要的新測量:發射的信號、耦合噪聲和差分對的差分信號或共模信號響應。采用這些技術實現的重要應用及其實例,都在本章中進行了描述。校準信號完整性測試維修