5、三角形(s:面積a:底h:高)面積=底×高÷2s=ah÷2三角形高=面積×2÷底三角形底=面積×2÷高6、平行四邊形(s:面積a:底h:高)面積=底×高s=ah7、梯形(s:面積a:上底b:下底h:高)面積=(上底+下底)×高÷2s=(a+b)×h÷28、圓形(S:面積C:周長лd=直徑r=半徑)(1)周長=直徑×л=2×л×半徑C=лd=2лr(2)面積=半徑×半徑×л9、圓柱體(v:體積h:高s:底面積r:底面半徑c:底面周長)(1)側面積=底面周長×高=ch(2лr或лd)(2)表面積=側面積+底面積×2(3)體積=底面積×高(4)體積=側面積÷2×半徑10、圓錐體(v:體積h:高s:底面積r:底面半徑)體積=底面積×高÷3數學教學教具的多樣化選擇滿足了不同教學風格的需求。遼寧數學教學教具配置方案
實物教具:幾何模型:幾何模型是用來展示幾何圖形的教具,如立體模型、平面模型等。它們可以幫助學生更好地理解幾何概念和性質。計算器:計算器是用來進行數學計算的工具。它們可以幫助學生進行復雜的計算,提高計算效率。尺子和量角器:尺子和量角器是用來測量長度和角度的工具。它們可以幫助學生進行準確的測量和繪圖。數學教學教具的分類類型多種多樣,每種教具都有其獨特的優勢和應用場景。教師應根據教學目標和學生的特點選擇合適的教具,以提高數學教學的效果和學生的學習興趣。遼寧數學教學教具配置方案數學教學教具的設計應符合學生的認知水平。
利用直觀教學,培養學生的觀察能力和思維能力。
觀察是正確思維的前提,通過觀察可使學生由感性認識上升到理性認識。在數學教學中如果能充分運用直觀教具進行演示操作,讓學生用眼看、用手摸、用心想。這樣學生通過觀察、分析、綜合、比較、分類等思維活動就會掌握知識的本質特征和內在聯系。例如:在講“三角形的內角和等于180度”時如果讓學生用量角器去量三個內角的度數則太繁瑣也不易得出結果而且也不易驗證其結果的準確性。如果用教具演示就容易多了:讓一個三角形模型的兩內角拼成一個平角(即180度),那么第三個內角必須是平角(180度)減去另兩個內角的和了。這樣通過演示操作學生就很容易理解和掌握“三角形的內角和等于180度”這個定理了。
由于學生的生活閱歷較少,觀察事物還不夠全,往往只看到局部而忽略整體或者是只能看到靜態而忽略動態。例如:在講“點的軌跡”時學生不易理解軌跡的形成。如果在講這部分時能利用直觀的教具進行演示,學生就容易理解。如:在黑板上固定一點(用圖釘),讓一根線段繞著這個點旋轉一周,并把每次旋轉的情形用彩筆畫在黑板上。這樣線段掃過的圖形(即軌跡)就是圓。從而使學生理解了軌跡的形成過程也加深了對圓的認識。再如:在學習三角形全等的判定方法時“邊角邊”這一判定方法學生不易理解。如果用教具演示:拿一個刻度尺和一個量角器讓學生畫一個三角形并驗證其全等。首先讓學生明白全等三角形的對應邊和對應角是相等的。然后再讓學生用量角器和刻度尺去畫三角形驗證其全等。這樣學生就容易理解“邊角邊”這一判定方法了。數學教學教具使復雜的數學問題簡單化。
直角三角形定律定理:在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半判定定理:直角三角形斜邊上的中線等于斜邊上的一半勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形多邊內角和定律定理:四邊形的內角和等于360°;四邊形的外角和等于360°多邊形內角和定理:n邊形的內角和等于(n-2)×180°推論:任意多邊的外角和等于360°。實物數學教學教具能增強學生的感性認識。遼寧數學教學教具配置方案
數學教學教具為數學教學帶來了更多的可能性。遼寧數學教學教具配置方案
小學數學是通過教材,教小朋友們關于數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。荷蘭教育家弗賴登諾爾認為:“數學來源于現實,也必須扎根于現實,并且應用于現實?!?現代數學要求我們用數學的眼光來觀察世界,用數學的語言來闡述世界。從小學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程,因此,做中學,玩中學,將抽象的數學關系轉化為學生生活中熟悉的事例,將使兒童學得更主動。從我們的教育目標來看,我們在傳授知識的同時,更應注重培養學生的觀察、分析和應用等綜合能力遼寧數學教學教具配置方案