熱敏電阻是一種傳感器電阻,其電阻值隨著溫度的變化而改變。按照溫度系數不同分為正溫度系數熱敏電阻和負溫度系數熱敏電阻。正溫度系數熱敏電阻器的電阻值隨溫度的升高而增大,負溫度系數熱敏電阻器的電阻值隨溫度的升高而減小,它們同屬于半導體器件。PTC熱敏電阻按受熱方式分為:直熱式、旁熱式熱敏電阻。目前大量被使用的PTC熱敏電阻種類有以下幾種。(1)自動消磁用PTC熱敏電阻。(2)延時啟動用PTC熱敏電阻。(3)恒溫加熱用PTC熱敏電阻。(4)過流保護用PTC熱敏電阻。(5)過熱保護用PTC熱敏電阻。(6)傳感器用PTC熱敏電阻。熱敏電阻將長期處于不動作狀態。常州電機熱敏電阻哪家劃算
熱敏電阻大家都知道是對溫度靈敏,電阻值會隨著溫度的變化而變化的電阻,它按照溫度系數不同分為正溫度系數熱敏電阻(PositiveTemperatureCoeffiCient,簡稱PTC)和負溫度系數熱敏電阻(NegativeTemperatureCoeffiCient,簡稱NTC)。熱敏電阻器當中比較熟悉的就是NTC熱敏電阻了,在電路開關電源中有個黑色圓片型的電子元件,那就是NTC熱敏電阻了,在開關電源剛啟動時起到防浪涌保護作用,除此之外,它還有體積小、功率大、靈敏度高、反應速度快等優勢應用于溫度測量、溫度補償等場合。常州電機熱敏電阻哪家劃算熱敏電阻的工作原理是基于溫度對材料電阻值的影響。
金屬熱敏電阻材料:此類材料作為熱電阻測溫、限流器以及自動恒溫加熱元件均有較為普遍的應用。如鉑電阻溫度計、鎳電阻溫度計、銅電阻溫度計等。其中鉑測溫傳感器在各種介質中(包括腐蝕性介質),表現出明顯的高精度和高穩定的特征。但是,由于鉑的稀缺和價格昂貴而使它們的普遍應用受到一定的限制。銅測溫傳感器較便宜,但在腐蝕性介質中長期使用,可導致靜態特性與阻值發生明顯變化。較近有資料報導,銅測溫傳感器可在空氣介質中-60~180℃溫度范圍使用。但是,國外為了在-60~180℃長期地測量溫度和在250℃短期測量溫度,普遍大量使用著鎳測溫傳感器,并認為鎳是一種較理想的材料,因為它們具有高的靈敏度、滿意的重現性和穩定性。
負溫度系數熱敏電阻的工作原理:NTC泛指負溫度系數很大的半導體材料或元器件,所謂NTC熱敏電阻就是負溫度系數熱敏電阻。負溫度系數熱敏電阻是以氧化錳、氧化鉆、氧化鎳、氧化銅和氧化鋁等金屬氧化物為主要原料,采用陶瓷工藝制造而成的。這些金屬氧化物材料都具有半導體性質,完全類似于儲、硅晶體材料,體內的載流子(電子和空穴)數目少,電阻較高;溫度升高,體內載流子數目增加,自然電阻值降低。NTC熱敏電阻在室溫下的變化范圍在100~100000,Ω溫度系數為一2%6.5%。負溫度系數熱敏電阻類型很多,按溫度范圍分為低溫(-60~300℃)、中溫(300-600℃、高溫(>600℃)三種,有靈敏度高、穩定性好、響應快、壽命長、價格低等優點,普遍應用于需要定點測溫的溫度自動控制電路,如冰箱、空調、溫室等的溫控系統。熱敏電阻的靈敏度和線性程度與其溫度系數有關。
熱敏電阻如何“讀取”溫度?熱敏電阻實際上并不“讀取”任何東西,而是熱敏電阻的電阻隨溫度而變化。電阻變化多少取決于熱敏電阻中使用的材料類型。與其他傳感器不同,熱敏電阻是非線性的,這意味著表示電阻和溫度之間關系的圖表上的點不會形成直線。線路的位置及其變化程度取決于熱敏電阻的結構。熱敏電阻和其他溫度傳感器的區別:時間常數:從一個溫度值更改為另一個溫度值所需的大致時間。這是熱敏電阻從初始讀數到較終讀數達到63.2%溫差的時間(以秒為單位)。穩定性:控制器根據傳感器的溫度反饋保持恒定溫度的能力。靈敏度:對溫度變化的響應程度。熱敏電阻通常需要與其他元器件一起使用,例如電容器、電阻器等。常州電機熱敏電阻哪家劃算
熱敏電阻的響應時間和準確性與其結構和材料有關。常州電機熱敏電阻哪家劃算
NTC熱敏電阻是什么做的?以過渡金屬氧化物(錳、鈷、鎳、鐵、銅,為了降低成本,在某些配方中用鐵或銅代替鈷)為原料,通過典型的電子陶瓷工藝,成型和燒結形成半導體陶瓷,一般情況下NTC熱敏電阻的導電機理是錳的變價引起的,在低溫下,這些氧化物材料有較少的載流子(電子和空穴),因此它們的電阻較高,隨著溫度的升高,電流被載流隨著子元件數量的增加,電阻值減小。除了社會過渡金屬氧化物外還會通過添加一些其他微量元素成分如氧化釔、五氧化二釩、氧化鑭來調節材料的電阻率和B常數,有些不同微量成分也能增加企業材料的穩定性,可以減少長期使用時電阻值的漂移。高溫熱敏電阻是指可在相應的高溫下使用,室溫下NTC熱敏電阻的工作范圍為100~1000000Ω,溫度系數為-2%~-6.5%。NTC熱敏電阻普遍應用于溫度測量、溫度控制、溫度補償等領域。常州電機熱敏電阻哪家劃算