新疆地緣遼闊、日照豐富,因此是我國光伏儲能發達的區域之一。為了保障光伏基地的正常運作,周期性的巡檢必不可少,傳統模式下需要人工一步一個腳印走出來,隨著現在無人機的廣落地應用,這種大面積大范圍的巡檢也迎來了效率的飛躍。光伏基地每隔一段地方就會有一個鐵塔,這些“駐塔式”機巢就是無人機的“巢穴”,無人機從這里起飛,進行巡邏,再回到這里進行充電,循環往復。得益于智慧化的建設,這些巡檢無人機有自主巡飛、自動巡檢的能力,可完成以機巢為中心5公里范圍內的輸配電線路和變電設備網格化巡檢任務。慧視AI圖像處理板是高精度識別的板卡。江西目標跟蹤進貨價
無人機只需要從基地起飛,就能夠對指定區域進行巡檢,智能攝像頭能夠自動問診地面,識別護欄錯位、路面積水、凹陷、裂縫、交通事故、車流異常等問題,然后標記位置。而控制中心能夠實時查看前方畫面,接收無人機回傳的數據,并進行診斷分析,整個過程無需過多的人工干預。這種無人機智能問診,是通過向無人機植入高性能的AI圖像處理板以及定制專門的目標識別算法來實現的。成都慧視開發的Viztra-LE026圖像處理板,就非常適合用在無人機智能化領域。這塊板卡外形呈圓形設計,尺寸為ф38*12mm,功率不超過4W,整體呈現功耗低、尺寸小的特點。用在緊湊型的無人機當中也不會因為空間問題而苦惱,并且不會過多消耗無人機的續航。此外,Viztra-LE026這款圖像處理板采用的是RV1126芯片,2.0TOPS的算力用在路面識別領域十分合適。視頻目標跟蹤批發價格慧視光電開發的慧視RV1126圖像處理板,采用了國產高性能CPU。
利用圖像處理技術實現導彈的遠程打擊是一項運用了比較長時間的技術,相比于現代化的電子控制,它具備低受干擾的特點,特別是無人機在軍備領域的廣泛應用,圖像處理的作用重新受到重視。遠程打擊時,需要對整個彈的識別能力進行深度學習訓練,不斷的訓練能夠讓AI更加聰明,讓AI知道該打擊什么,從而提升打擊精度。在前期的試驗印證階段,需要進行大量反復的試驗訓練,通過在導彈前端植入導引頭,給導彈裝上眼睛,可以實時記錄導彈打出后的視頻畫面,然后將大量的視頻數據采集到一起用于分析改進。
YOLO算法的關鍵技術在YOLO算法中,有幾個關鍵技術對其性能起著重要作用。首先是使用卷積神經網絡提取圖像特征,其中引入了一些先進的網絡結構,如Darknet。其次是使用AnchorBox來提高目標定位的精度。此外,YOLO算法還引入了特征金字塔網絡和多尺度預測等技術,以處理不同大小的目標。YOLO算法在實時目標檢測和跟蹤中的應用YOLO算法在實時目標檢測和跟蹤領域取得了明顯的成果。它不僅在檢測速度上遠超傳統方法,而且在目標定位和類別預測準確性上也表現出色。因此,YOLO算法在許多應用中得到了廣泛應用,如視頻監控、自動駕駛和物體識別等。RK3399圖像處理板是我司自主研發的目標跟蹤板,該板卡采用國產高性能CPU,搭載自研目標跟蹤及跟蹤算法。
目標識別算法是一種深度學習算法,其聰明程度需要我們不斷訓練,這就得益于大量的圖像標注,通過對車輛行駛環境的數據集的大量標注,能夠讓AI更加聰明,標注得越多,識別的精度就可能越高。但是大量的圖像標注跟工作顯然會耗費大量的時間精力。而慧視SpeedDP的出現很好地解決了這個問題。SpeedDP是一個深度學習AI算法訓練開發平臺,他能夠通過現有的算法模型或者自訓練一個算法模型,實現對新數據集的快速AI自動標注,以此反復,幫助使用者提升算法性能。能夠有效節約大量的時間。搭載AI智能算法的跟蹤板如何實現目標識別及跟蹤?光纖數據目標跟蹤生產企業
RK3399PRO圖像處理板是我司自主研發的目標跟蹤板,該板卡采用國產高性能CPU,搭載自研目標跟蹤及跟蹤算法。江西目標跟蹤進貨價
我國西部地區地形復雜、天氣多變,許多電網架設在高山流水之間,給電網的巡檢維護造成了不小的困難。于是,不同于傳統人工巡檢的智能化巡檢維護開始逐步應用。這種方式采用無人機加智能化機器人,其中無人機承擔巡檢工作,而智能化機器人進行維護,兩者互相配合。無人機搭載智能化吊艙,吊艙內置圖像識別傳感器,工程師可以通過遠程識別、抵近觀察等方式,找出問題所在。無人機機動性靈活性十足,能夠便捷去到許多人工難以到達的區域,巡檢無死角。無人機巡檢一次能夠抵得上三個人工同時作業,效率成倍提升。江西目標跟蹤進貨價