刀具監測技術主要可以分為兩大類:直接監測方法和間接監測方法。直接監測方法通常是通過使用光學或觸覺傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進行停機檢測,時間成本較高,因此不適用于工業生產。間接監測方法則是通過監測與刀具磨損或破損密切相關的傳感器信號,如振動、切削力、電流功率和聲發射等,并利用建立的數學模型間接獲得刀具磨損量或刀具破損狀態。這種方法可以在機床加工過程中持續進行,不影響加工進度,因此更適用于在線監測。其中,基于振動的監測法是一種常用的間接監測方法。切削過程中,振動信號包含豐富的與刀具狀態密切相關的信息。通過測量和分析振動信號,可以有效地監測刀具的磨損和破損情況。此外,切削力監測法也是一種常用的間接監測方法。加工過程中,切削力會隨著刀具狀態的變化而改變,因此通過監測切削力的變化也可以有效地判斷刀具的狀態??偟膩碚f,刀具監測技術對于確保加工質量和提高生產效率具有重要意義。在實際應用中,應根據具體的加工需求和條件選擇合適的監測方法和技術。先進的電機監測技術,如基于數學模型和人工智能的故障診斷方法,可以實現對電機狀態的精確估計和預測。。上海研發監測介紹
深度學習技術已經在滾動軸承故障監測和診斷領域取得了成功應用, 但面對不停機情況下的早期故障在線監測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發, 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網絡, 通過構建具有改進的比較大均值差異正則項和Laplace正則項的損失函數, 在自適應提取不同域數據的公共特征表示同時, 提高正常狀態和早期故障狀態之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態的排列熵值構建報警閾值, 實現在線數據中異常序列的快速匹配, 同時提高在線檢測結果的可靠性. 在XJTU-SY數據集上的實驗結果表明, 與現有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數.上海研發監測介紹使用聲學傳感器來監測切削過程中產生的聲音。不同的切削狀態和刀具健康狀況可能產生不同的聲音特征。
電力系統中發電機單機容量越大型發電機在電力生產中處于主力位置,同時大型發電機由于造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前今后很長一段時間內的缺電、用電緊張的狀況而言,發電機的年運行小時數目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監測與診斷,做到早期預警以防止事故的發生或擴大具有重要的現實意義。通常對發電機的“監測”與“診斷”在內容上并無明確的劃分界限,可以說監測的數據和結果即為診斷的依據。監測利用各種傳感器在電機運行時對電機的狀態提取相關數據。故障診斷使用計算機及其相應智能軟件,根據傳感器提供的信息,對故障進行分類定位,確定故障的嚴重程度并提出處理意見。因此狀態監測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態監測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內部實際的運行狀況,合理的安排檢修工作,實現所謂“預知”維修。這樣既可避免由于設備突然損壞,停止運行帶來的損失,又可充分發揮設備的作用。
電機狀態監測和振動分析提供加速度計選擇的建議。基于直流和非同步交流電機的常見故障。這些常見故障可通過振動分析檢測出來,包括機械和電氣故障。重點是傳感器的頻率范圍及其安裝方法,以便可靠地檢測這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發生的撞擊事件,但每個事件的能量可從起始點帶走,頻率在低至千赫范圍內。因此,用于檢測撞擊、摩擦和凹槽等事件的傳感器應在幾百赫茲到20千赫的寬頻范圍內響應。對于傳統的機械故障,如平衡和對準,頻率范圍從約0.2倍的運行速度到50-60倍運行速度是足夠的。電氣故障需要機械故障所需的低頻和高頻段。電機會同時出現機械和電氣故障,這會導致振動。只要安裝的振動傳感器具有足夠的帶寬和靈敏度,就可以檢測到這些故障。機械故障伴隨著沖擊、摩擦和疲勞,會產生比電氣故障頻率更劇烈的振動,但凹槽除外。凹槽產生的振動頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測機械故障,那么它們也將檢測電氣故障。設備監測可以滿足對部件疲勞程度診斷、機械摩擦磨損、機械沖擊、部件過熱等健康狀況問題的實時預警。
故障診斷可以根據狀態監測系統提供的信息來查明導致系統某種功能失調的原因或性質,判斷劣化發生的部位或部件,以及預測狀態劣化的發展趨勢等。電機故障診斷基本方法有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監測,電機的溫升與各種故障現象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。設備狀態監控是設備總體效率(OEE)優化和工業物聯網(IIoT)實現的關鍵因素,是實現智能且靈活生產的基礎。上海研發監測介紹
利用數據分析和機器學習算法來分析設備狀態數據,識別異常模式,并預測潛在故障。提高監測的準確性和效率。上海研發監測介紹
電機等振動設備在運行中,伴隨著一些安全問題,振動數據會發生變化,如果不及時發現,容易導致起火或,造成大量的財產損失,而這些問題具有突發性和不準確性,應對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數據,準確可靠,避免后期計算出現較大誤差。本傳感器采用無線通訊方式,低功耗設計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點,工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉窯、傳送設備等需要振動監測的設備上實時采集振動數據,然后通過無線方式將數據發送給采集端,采集端將數據解析、顯示或傳輸。系統能實時在線監測出設備異常,發出預警,避免事故發生。產品特點(1)實時性:系統實時在線監測電機等振動參數,避免了由于電機突然缺相、線圈故障,堵轉、固定螺栓松動、負載過高和人為錯誤操作等發生的事故。(2)便捷性:采用無線傳輸方式,傳感器安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:采用先進成熟的傳感技術和無線傳輸技術,抗干擾力強,傳輸距離遠,讀數準確,可靠性高。上海研發監測介紹