深度學習中的卷積神經網絡(CNN)在處理圖像數據方面表現出色。在刀具狀態監測中,可以利用CNN對刀具的圖像進行分析,識別刀具的磨損區域和程度。循環神經網絡(RNN)及其變體,如長短期記憶網絡(LSTM),則適用于處理時間序列數據,如切削過程中的連續振動信號,能夠捕捉信號中的動態特征,預測刀具的剩余使用壽命。此外,利用人工智能技術還可以實現刀具狀態監測的實時性和智能化。通過在線學習和模型更新,監測系統能夠適應不同的加工工況和刀具類型,自動調整監測參數和判斷標準。刀具狀態監測系統可以分析刀具切削時產生的振動信號。通常,刀具磨損加劇會使振動幅度和頻率發生變化。上海新一代刀具狀態監測設備
在現代機械加工和制造領域,刀具狀態監測具有至關重要的意義。首先,它有助于提高加工質量。刀具在長時間使用后會出現磨損、破損等情況,如果不及時監測,可能導致加工出來的零件尺寸偏差、表面粗糙度不符合要求,影響產品的精度和質量。例如,在精密儀器制造中,刀具的微小磨損可能會使零件無法達到所需的精度標準。其次,能夠有效提高生產效率。通過實時監測刀具狀態,可以提前預知刀具需要更換或維護的時間,避免因刀具突然損壞而造成的生產中斷。以汽車生產線為例,如果在加工關鍵部件時刀具出現故障,會導致整個生產線的停滯,造成巨大的時間和經濟損失。再者,降低生產成本。及時更換磨損嚴重的刀具可以避免過度使用造成的能源浪費,同時減少廢品的產生。此外,保障生產安全。破損的刀具可能會飛出,對操作人員造成傷害。總之,刀具狀態監測對于提高加工質量、生產效率,降低成本和保障安全都具有不可忽視的必要性。上海新一代刀具狀態監測設備刀具狀態監測系統根據監測結果自動調整刀具的切削參數,從而延長刀具的使用壽命。
刀具監測技術主要可以分為兩大類:直接監測方法和間接監測方法。直接監測方法通常是通過使用光學或觸覺傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進行停機檢測,時間成本較高,因此不適用于工業生產。間接監測方法則是通過監測與刀具磨損或破損密切相關的傳感器信號,如振動、切削力、電流功率和聲發射等,并利用建立的數學模型間接獲得刀具磨損量或刀具破損狀態。這種方法可以在機床加工過程中持續進行,不影響加工進度,因此更適用于在線監測。其中,基于振動的監測法是一種常用的間接監測方法。切削過程中,振動信號包含豐富的與刀具狀態密切相關的信息。通過測量和分析振動信號,可以有效地監測刀具的磨損和破損情況。此外,切削力監測法也是一種常用的間接監測方法。加工過程中,切削力會隨著刀具狀態的變化而改變,因此通過監測切削力的變化也可以有效地判斷刀具的狀態。總的來說,刀具監測技術對于確保加工質量和提高生產效率具有重要意義。在實際應用中,應根據具體的加工需求和條件選擇合適的監測方法和技術。盈蓓德科技-刀具監測系統。
隨著大數據、人工智能等技術的不斷發展,刀具狀態監測技術將向更加智能化、精細化的方向發展。未來,將出現更多基于深度學習等先進技術的監測方法和系統,實現刀具狀態的實時、精細監測和預測。同時,隨著物聯網技術的普及和應用,刀具狀態監測將更好地融入智能制造體系中,為提升加工質量和效率、降低生產成本提供有力支持。挑戰與解決方案挑戰多種失效形式并存且劣化過程復雜多變,傳統方法難以準確監測。采集樣本標簽需要停機測量刀具,模型訓練樣本獲取效率低。忽略了多種失效形式之間的相互關系,導致模型精度與泛化能力不足。解決方案采用數據驅動的算法構建多種失效形式與刀具狀態之間的映射關系,實現監測。引入深度學習等先進算法,提高模型的學習能力和泛化能力。優化傳感器布局和信號采集方式,提高樣本獲取效率和質量。刀具狀態監測是確保機械加工過程高效、高質量和安全運行的重要環節。
刀具狀態監測的發展趨勢(一)多傳感器融合單一傳感器獲取的信息往往具有局限性,難以***準確地反映刀具的狀態。未來,將多種傳感器進行融合,如切削力、振動、聲發射、溫度、圖像等傳感器的融合,能夠獲取更豐富、更***的刀具狀態信息,提高監測的準確性和可靠性。(二)在線實時監測隨著制造過程的自動化和智能化程度不斷提高,對刀具狀態監測的實時性要求也越來越高。在線實時監測能夠及時發現刀具的狀態變化,并在極短的時間內做出響應,實現加工過程的自適應控制和優化。(三)智能化監測利用人工智能、大數據等技術,實現刀具狀態監測的智能化。通過對大量監測數據的學習和分析,自動提取刀具狀態的特征信息,智能診斷刀具的磨損、破損等狀態,并預測刀具的剩余使用壽命。人工智能應用在刀具狀態監測系統中,能夠更精確地預測刀具的磨損狀態和剩余壽命。上海自主研發刀具狀態監測介紹
刀具狀態監測系統保障生產安全,破損的刀具可能會飛出,對操作人員造成傷害。上海新一代刀具狀態監測設備
針對刀具磨損狀態在實際生產加工過程中難以在線監測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態。將卷積神經網絡用于構建刀具磨損狀態識別模型,直接將采集到的數據作為輸入,得到了和傳統方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態,對模型進行實時更新,從而在實時監測過程中實現自學習,不斷提升模型的精度和預測效果。盈蓓德科技-刀具狀態監測。上海新一代刀具狀態監測設備