通過將整車測試、噪音測試、異音測試的主觀評估結果與下線生產大數據自學習的極限值相結合,可以篩選出導致客戶投訴的產品,以及存在隱性生產缺陷的產品。通過對生產數據的長期統計分析將評估范圍從下線檢測擴展到整個生產鏈過程,并能發現包括不限于齒輪加工中的質量趨勢和隱藏的相關性等等。什么是聲學生產下線檢測系統?它是安裝在生產下線測試臺架上的測量系統,通過盡可能地模擬產品的實際工況,從而獲得產品在接近真實工況下的NVH外特性,據此對產品的NVH、噪聲、振動、異音表現進行聲學質量評估和判斷。異響檢測系統采用先進的數字信號處理技術,能夠自動識別電機類產品中的異音異響問題,并及時報警。上海智能異響檢測供應商家
異音下線檢測在實際生產線上的實現,主要依賴于先進的傳感器技術、信號處理技術以及機器學習算法。以下是該方法在實際生產線上實現的具體步驟和要點:一、系統組成異音下線檢測系統通常由硬件和軟件兩部分組成:硬件部分:包括傳感器(如麥克風、振動傳感器、加速度計等)、數據采集設備、以及可能的隔聲或吸聲裝置。這些硬件被巧妙地布置在生產線的關鍵節點,以捕捉產品在工作過程中產生的聲音和振動信號。軟件部分:包括信號處理模塊、特征提取模塊、機器學習模型以及用戶界面等。軟件部分負責接收硬件采集的數據,進行預處理、特征提取和異常檢測,并將檢測結果以直觀的方式展示給操作人員。耐久異響檢測應用通過科學的檢測方法和有效的維護措施可以及時發現并解決設備的異響問題確保產品的正常運行和延長使用壽命。
AI技術可以通過學習大量的聲音樣本,識別和分類各種車輛異響的來源。它可以分析發動機、懸掛系統、排氣系統、傳動系統等部件的聲音,并與預先訓練的模型進行比對,以確定是否存在異常噪音。這種方法具有高效、準確的特點,可以顯著提高異響檢測的效率和準確性。三、異響檢測的挑戰與解決方案挑戰:異響可能由多個因素引起,如零部件損壞、松脫、磨損或不正確安裝等,且可能同時存在多個異響源,使得準確診斷變得復雜。偶發性異響(如經過顛簸路面時的吱嘎聲)和特定車速/轉速下持續/周期性出現的異響難以捕捉和定位。
可以用耳朵靠近設備,或者使用聽診器等工具進行檢測。這種方法對于一些明顯的異響問題比較有效,但對于一些輕微的異音可能不太敏感。振動法:通過檢測產品或設備的振動情況來判斷是否存在異音問題。可以使用振動傳感器等設備進行檢測。振動法可以發現一些隱蔽的故障,但需要專業設備和技術支持。紅外熱像法:通過紅外熱像儀檢測產品或設備運行過程中的溫度變化,判斷是否存在異常情況。這種方法可以發現一些電氣故障引起的異音問題,但同樣需要專業設備和技術支持。異音、異響、NVH EOL下線檢測系統實現了超越設備限制,在任意終端上分析和展示實時生產情況。
機械設備及產品發出的聲音、異音、噪音信號能夠有效表征其運行狀態,若出現異音異響,則表明其機械設備及產品存在故障或質量缺陷。目前機械設備及產品的質量檢測和故障診斷大多采用人工聽診的方法,存在誤判率高、效率低下以及生產成本日益增加的問題。本成果專注于工業聲學大數據在智能制造領域應用,開發工業智能聽診系統,其利用聲學傳感器在線采集機械設備及產品信號,依據專業聲學分析方法,結合機器學習技術,可替代人工完成產品異音異響下線檢測及關鍵設備的預測性維護。異響檢測查找產品內部的松動、摩擦、振動、電氣故障等多種原因。上海性能異響檢測方案
異響檢測的優勢:提高檢測效率和準確性,降低成本和人力資源的浪費。可以對檢測結果進行記錄和分析。上海智能異響檢測供應商家
失去了發動機的掩蓋效應之后,各種生產缺陷被放大,比如齒輪齒面波紋度和軸承異響,更容易被人耳識別到。電動機轉矩波動會通過動力總成固定裝置傳遞到車身或者通過輸出軸傳遞到驅動輪。這些力矩波動可以通過扭轉加速度測量甚至表現為線性振動。找出隱藏的質量缺陷盡管整車測試中沒有主觀異響或者噪音,但也可能存在限制產品使用壽命的耐久性質量缺陷。生產統計分析通過存儲100%生產測試的所有結果生成的結果數據庫,可以進行生產數據統計學分析:前N項主要質量缺陷分析,提供一個簡潔的產線概覽。上海智能異響檢測供應商家