提高示波器探頭靈敏度
電流探頭可以測量流經探頭鉗口的電流所生成的磁場。它會生成與輸入電流成正比的電壓輸出。如果您正在測量直流信號或小幅度的低頻交流信號,可以通過在探頭上纏繞多匝被測導體來提高測量靈敏度。此時信號的強度將按照被測導體在探頭上纏繞的匝數倍增。例如,如果一個導體在探頭上纏繞了5圈,而示波器顯示的讀數為25mA,那么實際的電流就是25mA除以5,即5mA。在本例中,您可以將電流探頭的靈敏度提高5倍。
使用鉗式電流探頭和示波器可以非常簡便地測量電流,并且不必破壞電路。不過,當您在測量結果中引入示波器的寬帶噪聲時,示波器的垂直噪聲可能會妨礙您進行精確的低電平電流測量。通過應用本文中介紹的一個或多個測量技巧,您可以消除示波器的隨機噪聲,以及電流探頭的多余磁性或直流偏置,從而顯著提高您的測量精度。 展現出其高精度、可靠性強及測量范圍廣等出色優點。差分探頭 示波器
示波器電流探頭測量電子設備的電流的過程
連接階段
準備測量電路:將被測電路與示波器和電流探頭正確連接。通常,示波器的地線應連接到電路的地點,而電流探頭則應連接到電流測量點上。在連接過程中,應注意避免短路和斷路等問題。
調整示波器設置:首先,將示波器的觸發源設置為外部觸發,并將觸發方式調整為自由運行模式。這將使示波器觸發信號與電流探頭的輸出信號觸發同步。然后,調整示波器的水平和垂直縮放以適應電流探頭的輸出信號。 差分探頭 示波器零磁通電流探頭采用霍爾效應傳感器技術來測量交流和直流信號。
電流探頭在測試直流和低頻交流時的工作原理
當電流鉗閉合,把一通有電流的導體圍在中心時,響應地會出現一個磁場。這些磁場使霍爾傳感器內的電子發生偏轉,在霍爾傳感器的輸出產生一個電動勢。電流探頭根據這個電動勢產生一個反向(補償)電流送至電流探頭的線圈,使電流鉗中的磁場為零,以防止飽和。電流探頭根據反向電流測得實際的電流值。用這個方法,能夠非常線性的測量大電流,包括交直流混合的電流。
DK柔性電流探頭是您理想的電子電力開發應用工具,它結合了一個易于使用,小巧、靈活、準確、快捷、安全的設備可以提供給所有的示波器和數字電表使用,它可以從小電流到大電流,并且可以把波形在示波器上顯示出來,使用頻率比較大 30MHz,非常適合電子各方面的研究與開發。
示波器電流探頭的環路補償原理是為了糾正電流探頭在高頻測量中可能產生的相位移和幅度誤差。
環路補償的背景探頭特性:電流探頭在高頻測量時,由于其自身的電感、電容等元件的存在,會對測量的電流信號產生一定的影響,導致信號的相位移和幅度誤差。
測量準確性:為了獲得更準確的測量結果,需要對這些誤差進行補償。
示波器探頭對測量結果的準確性以及正確性至關重要,它是連接被測電路與示波器輸入端的電子部件。較簡單的探頭是連接被測電路與電子示波器輸入端的一根導線,復雜的探頭由阻容元件和有源器件組成。簡單的探頭沒有采取屏蔽措施很容易受到外界電磁場的干擾,而且本身等效電容較大,造成被測電路的負載增加,使被測信號失真。 柔性探頭可以作為傳感器用于環境監測和工業自動化控制中,通過柔性探頭可快速采集與環境有關的數據。
探頭會使被測信號衰減,這樣呈現給示波器的信號就不會超過示波器的輸入范圍。較大衰減比如 10:1、50:1、100:1 等,用于測量較高的電壓,而小衰減比如 2:1 和 1:1,適用于較低的電壓。測量系統的噪聲(示波器噪聲加探頭噪聲)會使得探頭衰減比成正比增加。在選擇探頭時,這是一個重要的考慮因素。10:1 的無源探頭和 1:1 的無源探頭都可以用于測量 1Vpp 的典型信號,但 1:1 的無源探頭會帶來更有利的信噪比。
簡單的探頭沒有采取屏蔽措施很容易受到外界電磁場的干擾,而且本身等效電容較大,造成被測電路的負載增加,使被測信號失真。 差分探頭主要用于觀測差分信號,即承載差分信號的那一對走線,稱為差分走線。江蘇柔性電流探頭
我們相信鉗式電流探頭將繼續發揮其重要作用,為各行各業的工程師們提供更加精細、可靠的測量解決方案。差分探頭 示波器
電流傳感器的作用主要體現在以下幾個方面:
在某些特定場景中,需要對電流進行精確的調控。電流傳感器可以實現對電流的精確定位和調節,以滿足特定的需求。
電流傳感器作為一種檢測裝置,能感受到被測電流的信息,并能將檢測到的信息轉換為符合一定標準的電信號或其他所需形式的信息輸出。這滿足了信息的傳輸、處理、存儲、顯示、記錄和控制等要求。
在電力系統中,電流傳感器被廣泛應用于變頻器、DC/DC轉換器、電機控制器、開關電源、不間斷電源、電池管理系統以及傳統工業等各個領域。 差分探頭 示波器