在AFAM 測試系統(tǒng)開發(fā)方面,Hurley 等開發(fā)了一套基于快速數(shù)字信號處理的掃頻模式共振頻率追蹤系統(tǒng)。這一測試系統(tǒng)可以根據(jù)上一像素點的接觸共振頻率自動調(diào)整掃描頻率的上下限。隨后,他們又開發(fā)出一套稱為SPRITE(scanning probe resonance image tracking electronics) 的測試系統(tǒng),可以同時對探針兩階模態(tài)的接觸共振頻率和品質(zhì)因子進(jìn)行成像,并較大程度上提高成像速度。Rodriguez 等開發(fā)了一種雙頻共振頻率追蹤(dual frequency resonance tracking,DFRT) 的方法,此種方法應(yīng)用于AFAM 定量化成像中,可以同時獲得探針的共振頻率和品質(zhì)因子。日本的Yamanaka 等利用PLL(phase locked loop) 電路實現(xiàn)了UAFM 接觸共振頻率追蹤。納米力學(xué)測試可應(yīng)用于納米材料、生物材料、涂層等領(lǐng)域的研究和開發(fā)。湖北科研院納米力學(xué)測試供應(yīng)
將近場聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來發(fā)展的納米力學(xué)測試方法。掃描探針聲學(xué)顯微術(shù)有多種應(yīng)用模式,如超聲力顯微術(shù)(ultrasonic force microscopy,UFM)、原子力聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)、超聲原子力顯微術(shù)(ultrasonic atomic force microscopy,UAFM),掃描聲學(xué)力顯微術(shù)(scanning acoustic force microscopy,SAFM)等。在以上幾種應(yīng)用模式中,以基于接觸共振檢測的AFAM 和UAFM 這兩種方法應(yīng)用較為普遍,有時也將它們統(tǒng)稱為接觸共振力顯微術(shù)(contact resonance force microscopy,CRFM)。湖北科研院納米力學(xué)測試供應(yīng)納米力學(xué)測試還可以揭示納米材料的表面特性和表面反應(yīng)動力學(xué)。
原位納米力學(xué)測試系統(tǒng)是一種用于材料科學(xué)領(lǐng)域的儀器,于2011年10月27日啟用。壓痕測試單元:(1)可實現(xiàn)70nN~30mN不同加載載荷,載荷分辨率為3nN;(2)位移分辨率:0.006nm,較小位移:0.2nm,較大位移:5um;(3)室溫?zé)崞疲?.05nm/s;(4)更換壓頭時間:60s。能夠?qū)崿F(xiàn)薄膜或其他金屬或非金屬材料的壓痕、劃痕、摩擦磨損、微彎曲、高溫測試及微彎曲、NanoDMA、模量成像等功能。力學(xué)測試芯片大小只為幾平方毫米,亦可放置在電子顯微鏡真空腔中進(jìn)行原位實時檢測。
譜學(xué)技術(shù)微納米材料的化學(xué)成分分析主要依賴于各種譜學(xué)技術(shù),包括紫外-可見光譜紅外光譜、x射線熒光光譜、拉曼光譜、俄歇電子能譜、x射線光電子能譜等。另有一類譜儀是基于材料受激發(fā)的發(fā)射譜,是專為研究品體缺陷附近的原子排列狀態(tài)而設(shè)計的,如核磁共振儀、電子自旋共振譜儀、穆斯堡爾譜儀、正電子湮滅等等。熱分析技術(shù),納米材料的熱分析主要是指差熱分析、示差掃描量熱法以及熱重分析。三種方法常常相互結(jié)合,并與其他方法結(jié)合用于研究微納米材料或納米粒子的一些特 征:(1)表面成鍵或非成鍵有機基團(tuán)或其他物質(zhì)的存在與否、含量多少、熱失重溫度等(2)表面吸附能力的強弱與粒徑的關(guān)系(3)升溫過程中粒徑變化(4)升溫過程中的相轉(zhuǎn)變情況及晶化過程。納米力學(xué)測試可以幫助研究人員了解納米材料的疲勞行為,從而改進(jìn)納米材料的設(shè)計和制備工藝。
原位納米片取樣和力學(xué)測試技術(shù),原位納米片取樣和力學(xué)測試技術(shù)是一種新興的納米尺度力學(xué)測試方法,其基本原理是利用優(yōu)化的離子束打造方法,在含有待測塑料表面的納米區(qū)域內(nèi)制備出超薄的平面固體材料,再對其進(jìn)行拉伸、扭曲等力學(xué)測試。相比于傳統(tǒng)的拉伸試驗等方法,原位納米片取樣技術(shù)具有更優(yōu)的尺寸控制和納米量級精度,可以為納米尺度力學(xué)測試提供更加準(zhǔn)確的數(shù)據(jù)。總之,原位納米力學(xué)測量技術(shù)的研究及應(yīng)用是未來納米材料科學(xué)發(fā)展的重要方向之一,將為納米材料的設(shè)計、開發(fā)以及工業(yè)應(yīng)用等領(lǐng)域的發(fā)展做出積極貢獻(xiàn)。面向未來,納米力學(xué)測試將繼續(xù)拓展人類對微觀世界的認(rèn)知邊界。湖北科研院納米力學(xué)測試供應(yīng)
納米力學(xué)測試可以幫助研究人員了解納米材料的力學(xué)響應(yīng)機制,從而推動納米科學(xué)的發(fā)展。湖北科研院納米力學(xué)測試供應(yīng)
電子/離子束云紋法和電鏡掃描云紋法,利用電子/離子?xùn)|抗蝕劑制作出10000線/mm的電子/離子?xùn)|云紋光柵,這種光柵的應(yīng)用頻率范圍為40~20000線/mm,柵線的較小寬度可達(dá)到幾十納米。電鏡掃描條紋的倍增技術(shù)用于單晶材料納米級變形測量。其原理是:在測量中,單晶材料的晶格結(jié)構(gòu)由透射電鏡(TEM)采集并記錄在感光膠片上作為試件柵,以幾何光柵為參考柵,較終通過透射電鏡放大倍數(shù)與試件柵的頻率關(guān)系對上述兩柵的干涉云紋進(jìn)行分析,即可獲得單晶材料表面微小的應(yīng)變場。STM/晶格光柵云紋法,隧道顯微鏡(STM)納米云紋法是測量表面位移的新技術(shù)。測量中,把掃描隧道顯微鏡的探針掃描線作為參考柵,把物質(zhì)原子晶格柵結(jié)構(gòu)作為試件柵,然后對這兩組柵線干涉形成的云紋進(jìn)行納米級變形測量。運用該方法對高定向裂解石墨的納米級變形應(yīng)變進(jìn)行測試,得到隨掃描范圍變化的應(yīng)變場。湖北科研院納米力學(xué)測試供應(yīng)