視頻監控中的多目標跟蹤(MTT)是一項重要而富有挑戰性的任務,由于其在各個領域的潛在應用而引起了研究人員的大量關注。多目標跟蹤任務需要在每幀中單獨定位目標,這仍然是一個巨大的挑戰,因為目標的外觀會立即發生變化,并且會出現極端的遮擋。除此之外,多目標跟蹤框架需要執行多個任務,即目標檢測、軌跡估計、幀間關聯和重新識別。多目標跟蹤分為目標檢測和跟蹤兩個主要任務。為了區分組內對象,MTT算法將ID與在特定時間內保持特定于該對象的每個檢測到的對象相關聯。然后利用這些ID來生成被跟蹤對象的運動軌跡。RK3588作為工業級圖像處理板能夠進行大量的目標識別信息處理。省時省力目標跟蹤銷售廠家
隨著社區等安防向著智能化的進一步發展,越來越多的領域對傳統意義上的視頻監控提出了更加的嚴格要求,雖然傳統監控系統已經可以滿足人們“眼見為實”的要求,但同時這種監控系統要求監控人員不得不始終看著監視屏幕,獲得視頻信息,通過人為的理解和判斷,才能得到相應的結論,做出相應的決策。因此,讓監控人員長期盯著眾多的電視監視器成了一項非常繁重的任務。特別在一些監控點較多的情況下,監控人員幾乎無法做到完整的監控。陜西自主可控目標跟蹤慧視微型雙光吊艙非常適用于無人機領域。
YOLO單卷積神經網絡在一次評價中直接從全圖中預測多個boundingboxes和類概率,在全圖上訓練并直接優化檢測性能,同時學習目標的泛化表示。然而,YOLO對邊界框預測施加了嚴格的空間約束,限制了模型可以預測的相鄰項目的數量。成群出現的小物件,如鳥類,對于此模型也同樣有問題。fasterR-CNN,一個由全深度CNN組成的單一統一對象識別網絡,提高了檢測的準確性和效率,同時減少了計算開銷。該模型集成了一種在區域方案微調之間交替的訓練方法,使得統一的、基于深度學習的目標識別系統能夠以接近實時的幀率運行,然后在保持固定目標的同時微調目標檢測。
視覺目標跟蹤是指對圖像序列中的運動目標進行檢測、提取、識別和跟蹤,獲得運動目標的運動參數,如位置、速度、加速度和運動軌跡等,從而進行下一步的處理與分析,實現對運動目標的行為理解,以完成更高一級的檢測任務。根據跟蹤目標的數量可以將跟蹤算法分為單目標跟蹤與多目標跟蹤。相比單目標跟蹤而言,多目標跟蹤問題更加復雜和困難。多目標跟蹤問題需要考慮視頻序列中多個單獨目標的位置、大小等數據,多個目標各自外觀的變化、不同的運動方式、動態光照的影響以及多個目標之間相互遮擋、合并與分離等情況均是多目標跟蹤問題中的難點。慧視光電開發的RK3588跟蹤板智能目標識別及追蹤,讓目標無處可藏。
當兩個圖像之間還有旋轉或比例變化時,往往使用基于控制點的方法進行圖像配準。所謂特征點匹配就是在一幀圖像中尋找具有不變性質的結構—特征點,例如,灰度局部極大值、局部邊緣、角等,與另一幀圖像中的同類特征點作匹配,從而求得該兩幀圖像之間的變換關系。從現實的觀點看,在全部特征點中,只有部分能得到正確的匹配,這是因為特征點尋找算法并非完美無缺。特征點匹配方法具有:處理的數據量不斷減少、可能匹配的數目少于互相關方法和受照度、幾何的變化影響較小的優點。根據具體的振動情況,選擇合適的特征點和速度較快的匹配策略是該任務研究的重點。目前的研究工作都致力于圖像間的自動配準,如直接相關匹配,基于圖像分割技術的配準,利用封閉輪廓的形心作為控制點的配準等。RV1126處理板如何實現目標的識別及跟蹤?省時省力目標跟蹤銷售廠家
慧視光電開發的慧視RK3588圖像處理板,采用了國產高性能CPU。省時省力目標跟蹤銷售廠家
近年來,我國多地智慧城市建設取得較好的成效,諸多創新技術和解決方案得到廣泛應用。而在智慧停車方面,許多公共場所也開始逐步落地應用。一車一桿的系統,智能識別進出入車輛,控制車輛進出入,統計車位空缺數,在很大程度上能夠優化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機箱,該機箱集攝像頭、圖像處理板、顯示屏、內存卡等設備于一體,其中圖像處理板內置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進行快速又高精度的信息識別,并上傳數據到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優化管理。省時省力目標跟蹤銷售廠家