現代化生產企業為了極大限度地提高生產水平和經濟效益,不斷地向規模化和高技術技術含量發展,因此生產裝置趨向大型化、高速高效化、自動化和連續化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發生故障后會引起公害的設備。傳統的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態監測維修是在設備運行時,對它的各個主要部位產生的物理、化學信號進行狀態監測,掌握設備的技術狀態,對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態監測維修既能經常保持設備的完好狀態,又能充分利用零部位的使用壽命,從而延長大修間隔,減少故障停機損失。設備狀態監測是通過測定各類參數,并進行分析處理,根據分析處理結果判定設備狀態。常州產品質量監測控制策略
電機馬達監控系統適用于石油、化工、電力、煤炭、冶金、造紙、水泥等行業,可以實時對低壓電動機的運行狀態進行監測,對電機各類故障進行監測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機節能提供依據,并可實現電機節能管理。系統特點:1、實時監測電機回路石化、電力、水泥等電機用量大戶,需要對電機進行實時監測,監測內容包括電機的電流、電壓、電能、頻率、電機狀態(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數進行監測,例如溫度、壓力等。本系統不僅可以監測電機電壓、電流還能做能耗統計,工藝參數監測,可以大幅提高企業自動化程度。2、集中監控,利于節能馬達監控系統對用電大戶電機進行實時能耗監測,監測到的數據可以作為節能依據,并可通過系統進行節能控制,利于電機節能應用。3、提高自動化水平.電機監控系統是應用電力自動化技術、計算機技術和信息傳輸技術,集保護、監測、控制、通信等功能于一體的綜合系統,常州產品質量監測控制策略盈蓓德科技可以搭建造價低廉,性能穩定,安裝方便,功能實用,使用簡單,維護工作量少的電機振動監測系統。
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障必然表現為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規的監測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現早期故障有效分析,涉及方法包括:多傳感系統檢測及信息融合,非平穩及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規律與特點分析,以及相關數據挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數據信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態劣化的相關評價參數、模式及準則。如表征設備狀態發展的參數及特征模式,狀態發展評價準則及條件,面向安全保障的決策理論方法,穩定性、可靠性及維修性評估依據及判據等。物聯網聲學監控系統以音頻數據,輔以其他設備參數,通過物聯網技術實現設備狀態的遠程感知,基于AI神經網絡技術,計算并提取設備音頻特征,從而實現設備運行狀態的實時評估與故障的早期識別。幫助企業用戶提升生產效率,保證生產安全,優化生產決策。電機監測和故障預判系統應用行業很多,助力實現工業設備數智化管理和預測性維護。
動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。動力裝備全生命周期性能優化服務方面:提供了轉子全息動平衡快速響應與服務支持、以全息譜為失衡故障確診、動力裝備轉子和軸系平衡配重方案優化。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。可應用于風力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯網的動力裝備全生命周期監測與服務支持創新模式,提供了其生命周期的遠程監測診斷與維護等專業化服務。電機的監測和故障預判系統助力實現工業設備數智化管理和預測性維護。常州產品質量監測控制策略
電機狀態監測系統可以判斷潛在故障隱患,診斷故障的性質和程度,并預測故障發展趨勢,給出治理預防策略。常州產品質量監測控制策略
任何設備在故障發生之前都會出現一些異常現象或癥狀,如振動偏大,有異常噪音等。持續狀態監測在預測性維護實踐中起著重要作用,而關鍵的監測參數是振動。設備振動揭示了對組件問題的重要見解,這些問題可能會降低流程質量并導致生產停工。通過油溫升高可能是由于軸承運行狀態異常,也可能是室溫高、散熱慢、潤滑油枯度偏高或運行時間較長等原因。因此,在判斷時可能出現兩類決策錯誤;一是把實際處于異常狀態的機器誤認為正常狀態,二是把實際處于正常狀態的機器錯認為異常狀態。如果同時用幾個特征,如油溫.潤滑油分析和噪聲來監視機器主軸承的運行狀態,判斷就較為可靠。由此可見,正確的識別理論是十分重要的。遠程終端廣泛應用于工業互聯網、分布式數據采集、設備狀態的在線監測,能夠進行前端數據清洗和邊緣計算,通過對歷史數據趨勢分析、設備數據機理分析、統計分析等大數據分析,對設備的狀態有效可靠的健康狀態評判,從而切實有效的提高設備的維護能力。遠程終端可實現對設備狀態的自檢,分析計量故障等信息,及時發現計量異常。現場監測箱開門、斷電、設備運行等異常信息也能夠主動發送報警信息到監測中心,實現設備在線監診的準確性、完整性、及時性和可靠性。常州產品質量監測控制策略