對(duì)于真實(shí)的數(shù)據(jù)信號(hào)來說,其頻譜會(huì)更加復(fù)雜一些。比如偽隨機(jī)序列(PRBS)碼流的頻譜的包絡(luò)類似一個(gè)sinc函數(shù)。圖1.4是用同一個(gè)發(fā)送芯片分別產(chǎn)生的800Mbps和2.5Gbps的PRBS信號(hào)的頻譜,可以看到雖然輸出數(shù)據(jù)速率不一樣,但是信號(hào)的主要頻譜能量集中在4GHz以內(nèi),也并不見得2.5Gbps信號(hào)的高頻能量就比800Mbps的高很多。
頻譜儀是對(duì)信號(hào)能量的頻率分布進(jìn)行分析的準(zhǔn)確的工具,數(shù)字工程師可以借助頻譜分析儀對(duì)被測數(shù)字信號(hào)的頻譜分布進(jìn)行分析。當(dāng)沒有頻譜儀可用時(shí),我們通常根據(jù)數(shù)字信號(hào)的上升時(shí)間估算被測信號(hào)的頻譜能量:
信號(hào)的比較高頻率成分=0.5/信號(hào)上升時(shí)間(10%~90%)
或者當(dāng)使用20%~80%的上升時(shí)間標(biāo)準(zhǔn)時(shí),計(jì)算公式如下:
信號(hào)的比較高頻率成分=0.4/信號(hào)上升時(shí)間(20%~80%) 數(shù)字信號(hào)上升時(shí)間是示波器中進(jìn)行上升時(shí)間測量例子,光標(biāo)交叉點(diǎn)指示出上升時(shí)間測量的起始點(diǎn)和結(jié)束點(diǎn)的位置;浙江數(shù)字信號(hào)測試哪里買
簡單的去加重實(shí)現(xiàn)方法是把輸出信號(hào)延時(shí)一個(gè)或多個(gè)比特后乘以一個(gè)加權(quán)系數(shù)并和 原信號(hào)相加。一個(gè)實(shí)現(xiàn)4階去加重的簡單原理圖。
去加重方法實(shí)際上壓縮了信號(hào)直流電平的幅度,去加重的比例越大,信號(hào)直流電平被壓縮得越厲害,因此去加重的幅度在實(shí)際應(yīng)用中一般很少超過-9.5dB。做完預(yù)加重或者去加重的信號(hào),如果在信號(hào)的發(fā)送端(TX)直接觀察,并不是理想的眼圖。圖1.31所示是在發(fā)送端看到的一個(gè)帶-3.5dB預(yù)加重的10Gbps的信號(hào)眼圖,從中可以看到有明顯的“雙眼皮”現(xiàn)象。 浙江數(shù)字信號(hào)測試哪里買數(shù)字信號(hào)的帶寬(Bandwidth);
數(shù)字信號(hào)的帶寬(Bandwidth)
在進(jìn)行數(shù)字信號(hào)的分析和測試時(shí),了解我們要分析的數(shù)字信號(hào)的帶寬是很重要的一點(diǎn),它決定了我們進(jìn)行電路設(shè)計(jì)時(shí)對(duì)PCB走線和傳輸介質(zhì)傳輸帶寬的要求,也決定了測試對(duì)儀表的要求。
數(shù)字信號(hào)的帶寬可以大概理解為數(shù)字信號(hào)的能量在頻域的一個(gè)分布范圍,由于數(shù)字信號(hào)不是正弦波,有很多高次諧波成分,所以其在頻域的能量分布是一個(gè)比較復(fù)雜的問題。
傳統(tǒng)上做數(shù)字電路設(shè)計(jì)的工程師習(xí)慣根據(jù)信號(hào)的5次諧波來估算帶寬,比如如果信號(hào)的數(shù)據(jù)速率是100Mbps,其快的0101的跳變波形相當(dāng)于50MHz的方波時(shí)鐘,這個(gè)方波時(shí)鐘的5次諧波成分是250MHz,因此信號(hào)的帶寬大概就在250MHz以內(nèi)。這種方法看起來很合理,因?yàn)?次諧波對(duì)于重建信號(hào)的基本波形形狀是非常重要的,但這種方法對(duì)于需要進(jìn)行精確波形參數(shù)測量的場合來說就不太準(zhǔn)確了。比如同樣是50MHz 的信號(hào),如果上升沿很陡接近理想方波,其高次諧波能量就比較大;而如果上升沿很緩接近 正弦波,其高次諧波能量就很小。
數(shù)字信號(hào)并行總線與串行總線(Parallel and Serial Bus)
雖然隨著技術(shù)的發(fā)展,現(xiàn)代的數(shù)字芯片已經(jīng)集成了越來越多的功能,但是對(duì)于稍微復(fù)雜 一點(diǎn)的系統(tǒng)來說,很多時(shí)候單獨(dú)一個(gè)芯片很難完成所有的工作,這就需要和其他芯片配合起 來工作。比如現(xiàn)在的CPU的處理能力越來越強(qiáng),很多CPU內(nèi)部甚至集成了顯示處理的功 能,但是仍然需要配合外部的內(nèi)存芯片來存儲(chǔ)臨時(shí)的數(shù)據(jù),需要配合橋接芯片擴(kuò)展硬盤、 USB等接口;現(xiàn)代的FPGA內(nèi)部也可以集成CPU、DSP、RAM、高速收發(fā)器等,但有些 場合可能還需要配合用的DSP來進(jìn)一步提高浮點(diǎn)處理效率,配合額外的內(nèi)存芯片來擴(kuò)展 存儲(chǔ)空間,配合用的物理層芯片來擴(kuò)展網(wǎng)口、USB等,或者需要多片F(xiàn)PGA互連來提高處 理能力。所有這一切,都需要用到相應(yīng)的總線來實(shí)現(xiàn)多個(gè)數(shù)字芯片間的互連。如果我們把 各個(gè)功能芯片想象成人體的各個(gè)功能,總線就是血脈和經(jīng)絡(luò),通過這些路徑,各個(gè)功能 模塊間才能進(jìn)行有效的數(shù)據(jù)交換和協(xié)同工作。 數(shù)字信號(hào)的時(shí)鐘分配(Clock Distribution);
可以插入控制字符。在10bit數(shù)據(jù)可以表示的1024個(gè)組合中,除了512個(gè)組合用 于對(duì)應(yīng)原始的8bit數(shù)據(jù)以及一些不太好的組合(這樣信號(hào)里有太長的 連續(xù)0或者1,而且明顯0、1的數(shù)量不平衡)以外,還有一些很特殊的組合。這些特殊的組 合可以用來在數(shù)據(jù)傳輸過程中作為控制字符插入。這些控制字符不對(duì)應(yīng)特定的 8bit數(shù)據(jù),但是在有些總線應(yīng)用里可以一些特殊的含義。比如K28.5碼型,其特殊的 碼型組合可以幫助接收端更容易判別接收到的連續(xù)的10bit數(shù)據(jù)流的符號(hào)邊界,所以在一 些總線的初始化階段或數(shù)據(jù)包的包頭都會(huì)進(jìn)行發(fā)送。還有一些特殊的符號(hào)用于進(jìn)行鏈路訓(xùn) 練、標(biāo)記不同的數(shù)據(jù)包類型、進(jìn)行收發(fā)端的時(shí)鐘速率匹配等。數(shù)字信號(hào)可通過分時(shí)將大量信號(hào)合成為一個(gè)信號(hào)(稱復(fù)用信號(hào)),通過某個(gè)處理器處理后,再將信號(hào)解復(fù)用;浙江數(shù)字信號(hào)測試哪里買
數(shù)字通信的帶寬表征為:bit的傳輸速率;浙江數(shù)字信號(hào)測試哪里買
采用并行總線的另外一個(gè)問題在于總線的吞吐量很難持續(xù)提升。對(duì)于并行總線來說, 其總線吞吐量=數(shù)據(jù)線位數(shù)×數(shù)據(jù)速率。我們可以通過提升數(shù)據(jù)線的位數(shù)來提高總線吞吐 量,也可以通過提升數(shù)據(jù)速率來提高總線吞吐量。以個(gè)人計(jì)算機(jī)中曾經(jīng)非常流行的PCI總 線為例,其**早推出時(shí)總線是32位的數(shù)據(jù)線,工作時(shí)鐘頻率是33MHz,其總線吞吐量= 32bit×33MHz;后來為了提升其總線吞吐量推出的PCI-X總線,把總線寬度擴(kuò)展到64位, 工作時(shí)鐘頻率比較高提升到133MHz,其總線吞吐量=64bit×133MHz。是PCI插槽 和PCI-X插槽的一個(gè)對(duì)比,可以看到PCI-X由于使用了更多的數(shù)據(jù)線,其插槽更長。
但是隨著人們對(duì)于總線吞吐量要求的不斷提高,這種提升總線帶寬的方式遇到了瓶頸。首先由于芯片尺寸和布線空間的限制,64位數(shù)據(jù)寬度已經(jīng)幾乎是極限了。另外,這64根數(shù)據(jù)線共用一個(gè)采樣時(shí)鐘,為了保證所有的信號(hào)都滿足其建立保持時(shí)間的要求,在PCB上布線、換層、拐彎時(shí)需要保證精確等長。而總線工作速率越高,對(duì)于各條線的等長要求就越高,對(duì)于這么多根信號(hào)要實(shí)現(xiàn)等長的布線是很難做到的。
用邏輯分析儀采集到的一個(gè)實(shí)際的8位總線的工作時(shí)序,可以看到在數(shù)據(jù)從0x00跳變到0xFF狀態(tài)過程中,這8根線實(shí)際并不是精確一起跳變的。 浙江數(shù)字信號(hào)測試哪里買