而像標注、適配性移植部署等工作會耗費圖像算法工程師大量時間和精力。對于時間成本的把控不到位,就變相增加了項目整體成本。基于以上強烈的市場需求,成都慧視光電技術有限公司經過兩年的研發改進,推出了SpeedDP深度學習算法開發平臺,該平臺一經推出就得到了廣大圖像算法工程師的高度認可,尤其是一些圖像標注項目多、任務重的科研院所,更是對SpeedDP高度推崇。SpeedDP作為一款專門針對AI零基礎用戶的低門檻AI開發平臺,能夠給用戶提供從數據標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發功能。平臺提供豐富的算法參數設置接口,滿足不同用戶業務場景的定制化需求。此外,慧視光電SpeedDP深度學習算法開發平臺支持本地化服務器部署,滿足一些客戶需要對敏感數據或特定數據進行訓練防止數據泄露的要求。YOLO系列算法是目標識別領域很重要的技術之一。黑龍江企業圖像標注產品
進入冬季,北方各地陸續出現冰凍天氣,給不少地方的保供電工作增添了難度。目前,大多數地方都采用無人機巡檢的模式,但是面臨如此寒凍的天氣,無人機也可能會“懈怠”。但是大面積覆冰的影響下,人工巡檢又很難到達很多區域,所以還是不得不依靠無人機,只是需要性能更加強悍的無人機。無人機電力巡檢依靠可見光或者紅外兩種方式進行自動巡視檢測,這其中,用于進行圖像處理的傳感器性能尤其重要。面臨如此寒冷的天氣,圖像處理板能否正常工作十分關鍵,因此選對圖像處理板,關系整個寒冬的電力巡檢。福建圖像標注產品海量的數據處理很煩心。
無人機的迅猛發展,使得無人機的反制技術也水漲船高,常見的有電子干擾、無人機識別對抗等方式。后者采用圖像識別技術,通過在無人機攝像頭的基礎上加裝AI高性能圖像處理板,在算法的作用下,就具備無人機識別的功能,為無人機對抗創造條件。由于無人機飛行速度極快,因此針對于這樣環境下的AI識別需要“與眾不同”的圖像處理板。我們都知道,當視頻幀率越高時,視頻越能夠體現畫面細節信息,而圖像識別算法正是逐幀進行識別,因此,攝像頭捕捉到的畫面細節越多,識別的精度就會越高。
部署機器學習模型,也稱為模型部署,簡單來說就是將機器學習模型集成到現有的生產環境中,在該環境中,模型可以接受輸入并返回輸出。部署模型的目的是讓其他人(無論是用戶、管理人員還是其他系統)可以使用訓練有素的機器學習模型進行預測。模型部署與機器學習系統架構密切相關,機器學習系統架構是指系統內軟件組件的排列和交互,以實現預定義的目標。成都慧視推出的AI自動圖像標注軟件SpeedDP也是這樣,通過正確的模型部署后方能進行正確的AI模型訓練,讓AI更加智能。SpeedDP能夠快速處理海量的圖像數據集。
無人機夜間工作時需要依靠紅外機芯進行高清成像,而想要具備AI檢測識別的能力則可以通過植入圖像處理板。成都慧視可以根據需求提供整套的建設方案,實現快速集成開發。慧視Viztra-LE026圖像處理板+MiNO?17紅外機芯的組合方案,兩款產品均使用小巧設計,整體組合重量在30g左右,并且都采用小功耗設計,用在無人機領域不會過多增加負擔。在算法的賦能下,能夠實現穩定的目標檢測識別。Viztra-LE026圖像處理板重量在10g左右,采用了瑞芯微全國產化芯片RV1126,能夠輸出2.0TOPS的算力,功耗不高于4W。能夠以30Hz幀率跟蹤像素2*2的目標,能夠識別像素為12*12的目標,且識別率高于85%。而MiNO?17紅外機芯重量在20g左右(凈重5g(不含鏡頭)),像素分辨率為640*512,采用9/13/25mm三種定焦設計,支持18中偽彩選擇,功耗小于0.75W。大量的圖像標注怎么辦?重慶智能化圖像標注應用
一站式AI訓練平臺SpeedDP。黑龍江企業圖像標注產品
深度學習是機器學習的一個分支,只在近十年內才得到廣泛的關注與發展。它與機器學習不同的,它模擬我們人類自己去識別人臉的思路。比如,神經學家發現了我們人類在認識一個東西、觀察一個東西的時候,邊緣檢測類的神經元先反應比較大,也就是說我們看物體的時候永遠都是先觀察到邊緣。就這樣,經過科學家大量的觀察與實驗,總結出人眼識別的模式是基于特殊層級的抓取,從一個簡單的層級到一個復雜的層級,這個層級的轉變是有一個抽象迭代的過程的。深度學習就模擬了我們人類去觀測物體這樣一種方式,首先拿到互聯網上海量的數據,拿到以后才有海量樣本,把海量樣本抓取過來做訓練,抓取到重要特征,建立一個網絡,因為深度學習就是建立一個多層的神經網絡,肯定有很多層。有些簡單的算法可能只有四五層,但是有些復雜的,像剛才講的谷歌的,里面有一百多層。當然這其中有的層會去做一些數學計算,有的層會做圖像預算,一般隨著層級往下,特征會越來越抽象。黑龍江企業圖像標注產品