無人機在農業領域能夠實現高效率的施肥、播種等操作。但是不同的作業環境對于無人機的工作性能要求不一樣,同樣的方案在平原地區適用,在高原地區就不行。因此針對于特殊作業環境需要制定不同的智慧化方案。像青藏高原這樣地貌復雜、低氣壓、大溫差的特點,參與智能化工作的各個部件需要符合這樣作業環境特點的性能要求。不比平原的一馬平川,高原由于環境復雜,地形起伏對于無人機的飛行也需要進行控制,無論是高度還是速度甚至距離都需要進行嚴格限制,防止出現撞機等事故。因此,這個方面的智慧化建設就需要無人機具備智能避障的功能,無人機需要在高速度或者遠距離的情況下識別樹木、電線桿、石頭等障礙物,并能夠實現避障。一站式AI訓練平臺SpeedDP。河南比較好的圖像標注優勢
圖像識別技術的高價值應用就發生在你我身邊,例如視頻監控、自動駕駛和智能醫療等,而這些圖像識別進展的背后推動力是深度學習。深度學習的成功主要得益于三個方面:大規模數據集的產生、強有力的模型的發展以及可用的大量計算資源。對于各種各樣的圖像識別任務,精心設計的深度神經網絡已經遠遠超越了以前那些基于人工設計的圖像特征的方法。盡管到目前為止深度學習在圖像識別方面已經取得了巨大成功,但在它進一步廣泛應用之前,仍然有很多挑戰需要我們去面對。寧夏多系統適配圖像標注有哪些AI自動標注工具選SpeedDP。
2023年,全球科技領域受歡迎的當屬AI行業,原以為進入2024會沉寂一段時間,不聊Sora文生視頻大模型的發布又將這一熱度延續到了2024。AI+行業的持續火熱,為我國AI圖像處理板的發展應用提供了契機。我們所熟知的人形機器人在當今已有重要突破,它們已經不再像以前那樣只能進行簡單的直立行走,進行生硬的對話,隨著AI和其他傳感技術的不斷進步,人形機器人已經可以在一些重要行業替代人工進行工作,其中就有制造業、危險化學品行業等,機器人的應用能夠有效節約人力成本,同時,機器人還能夠進行人不能涉及的危險領域。而人形機器人之所以能夠有此作用,就是跟機器視覺有關。
多邊形標注能夠能夠幫助我們標注一些規則復雜的物體,如動物、人、車、建筑物等,與矩形標注框等方法相比,多邊形標注更能精確展示被標注物體的形狀、大小以及實時形態,通過大量的多邊形標注工作,能夠更好的幫助我們提高算法模型的準確性和魯棒性。傳統的多邊形標注方法中,標注者需要在物體的邊緣上依次單擊鼠標或使用繪圖工具,將點連接起來形成一個封閉的多邊形。標注的難度取決于被標注物體的復雜程度,相較于矩形框標注更加費時費力,如果遇到大量待標注目標,則極大地影響工作效率。SpeedDP是一個基于瑞芯微的深度學習算法開發平臺。
首先攝像機采用的是可見光高清攝像機,具備1920*1080的分辨率,系統視場31.11°×17.8°,其中搜索視場15.8°×15.8°(1080P像素)。而圖像處理則采用慧視開發的RV1126高性能圖像處理板,之所以采用這塊板卡,一方面得益于其低功耗、微型外觀的設計,非常契合“智慧眼”這樣對于空間要求嚴格的應用場景;另一方面RV1126具備2.0TOPS的算力,在國產化方面也十分完整,安全性十足。兩者結合,就能夠形成重量不超過100g的“智慧眼”。在算法的作用下,能夠達到≥50Hz的跟蹤幀率,≥25Hz的檢測幀率,實現捕獲4m*4m目標超過800m、6m*6m目標超過1000m。這就是“機器狼”的智慧化措施,通過一個“小小的”“智慧眼”的加入,便能夠讓其實現許多自動化任務。隨著技術的不斷發展,“機器狼”的形態將會不斷進步,滿足更多多樣化需求。SpeedDP能夠快速處理海量的圖像數據集。河南比較好的圖像標注優勢
SpeedDP能夠打造需要的算法模型。河南比較好的圖像標注優勢
圖像標注就是給圖像打上標簽標記,例如矩形框等形式,在以前,需要招聘專門的圖像標注師,隨著AI的不斷發展,這個行業正發生翻天覆地的變化。人工智能利用計算機和機器模仿人類思維來解決問題或制定決策。深度學習是人工智能的子領域,深度學習算法模型由神經網絡組成。通過學習樣本數據的特征表達以及數據分布實現能夠像人一樣具備分析和識別目標的能力。通常情況下,AI開發的基本流程是從需求分析、數據制作、模型訓練、測試驗證再到***的模型部署這幾個步驟,而SpeedDP正式采用標準的AI開發流程,從數據標注到模型開發,然后進行模型部署,來逐步實現自動化的圖像標注。河南比較好的圖像標注優勢