磁珠法質粒小量抽提試劑盒中的磁珠分離通常涉及以下步驟:1.**裂解細胞**:-首先,使用裂解液(含有SDS等成分)裂解細菌細胞,釋放出質粒DNA。2.**結合磁珠**:-將磁珠加入到裂解后的混合物中,磁珠表面通常修飾有能夠特異性結合核酸的配體,使得質粒DNA吸附于磁珠表面。3.**磁分離**:-將含有磁珠和質粒DNA的混合物置于磁分離架上。磁分離架產生磁場,使得磁珠迅速聚集在管壁或管底。4.**未結合物質**:-在磁珠固定后,小心移除上清液,避免擾動磁珠。上清液中含有未吸附的蛋白質、RNA和其他細胞碎片。5.**洗滌磁珠**:-向磁珠中加入洗滌液,輕輕混勻以去除殘留的雜質,然后再次使用磁分離架分離磁珠和洗滌液。6.**重復洗滌**:-根據試劑盒的說明,可能需要進行多次洗滌以確保高度純化。每次洗滌后都需洗滌液。7.**干燥磁珠**(如果需要):-在某些情況下,可能需要去除洗滌后的殘留液體,讓磁珠在磁場作用下干燥,但要注意不要使磁珠完全干燥,以免影響DNA的洗脫。8.**洗脫質粒DNA**:-使用洗脫液(通常是低鹽或高pH的緩沖液)將質粒DNA從磁珠上洗脫。洗脫液可以破壞磁珠與DNA之間的結合力,釋放DNA。。
熒光探針法是一種利用熒光標記的分子(即熒光探針)來檢測和定量目標分子的方法。這種方法廣泛應用于生物化學、分子生物學和醫學診斷等領域。以下是熒光探針法的一些關鍵特點和工作原理:1.**熒光標記**:熒光探針是一類特殊的分子,它們含有可以發出熒光的化學基團(熒光團)。這些熒光團在受到特定波長的光激發時,會發出特定波長的光。2.**特異性結合**:熒光探針通常設計成能夠特異性地與目標分子結合,如DNA、RNA、蛋白質或其他小分子。這種結合通常是通過分子間的互補性,如氫鍵、疏水作用或離子鍵等實現的。3.**信號變化**:熒光探針在結合目標分子前后,其熒光特性(如熒光強度、波長、壽命等)會發生改變。這種變化可以是增強或減弱,取決于探針的設計和環境條件。4.**檢測原理**:-在**熒光共振能量轉移(FRET)**中,兩個不同的熒光團被設計成靠近,使得一個熒光團(供體)的能量可以非放射性地轉移到另一個熒光團(受體)。當供體和受體之間的距離改變(如由于目標分子的結合)時,FRET效率會改變,從而影響熒光信號。-在**熒光增強或減弱**中,探針的熒光特性直接受到其與目標分子結合的影響。例如,某些探針在結合DNA后,其熒光強度會增強。Recombinant Human LILRA5/CD85f/ILT11 (His-Avi Tag)牛痘DNA拓撲異構酶I是TOPO克隆技術的關鍵組分,該技術允許快速、簡便地將PCR產物克隆到質粒載體中。
磁珠法DNA凝膠回收試劑盒是一種用于從DNA瓊脂糖凝膠中快速、高效地回收DNA片段的實驗工具。它通常包含特異性吸附核酸分子的納米磁珠和相應的緩沖液系統,能夠去除雜質,得到高質量的DNA回收產物。這種試劑盒適用于從TAE和TBE瓊脂糖凝膠中回收大小在100bp到30kb之間的DNA片段,回收效率通常可達70%左右。使用磁珠法DNA凝膠回收試劑盒的主要優勢包括:1.操作簡便快速,整個回收過程大約只需30分鐘。2.無需離心,方便實現高通量和自動化的DNA回收。3.與柱式法相比,磁珠法對于長片段DNA的回收效率更高,可高出約20%。4.純化得到的DNA可以直接用于酶切、連接、測序等后續分子生物學實驗。磁珠法的操作過程通常包括以下步驟:1.將瓊脂糖凝膠在融膠液中迅速融解,使DNA充分釋放。2.DNA與磁珠特異性結合,通過磁分離快速高效地分離磁珠與溶液。3.經過洗滌去除雜質。4.使用洗脫液將DNA從磁珠上洗脫,獲得高純度的DNA樣品。此外,一些試劑盒的說明書還會提供具體的操作步驟和所需材料的清單,包括磁珠、融膠液、洗滌液、洗脫液等組分,以及可能需要自備的無水乙醇和磁分離裝置。在使用過程中,需要注意產品的保存條件和有效期,以及操作時的個人安全防護措施。
磁珠本身并不直接參與電泳過程,但它們可以用于電泳后的樣品處理,特別是在核酸(DNA或RNA)的提取和純化過程中。以下是使用磁珠進行電泳后樣品處理的一般步驟:1.**凝膠電泳**:-首先,將DNA或RNA樣品通過凝膠電泳進行分離。凝膠通常是瓊脂糖或聚丙烯酰胺凝膠,根據樣品的大小和類型選擇合適的凝膠濃度和緩沖體系。2.**觀察和切割**:-電泳完成后,使用紫外線照射凝膠并使用適當的染料(如EB或SYBRGreen)對DNA或RNA進行染色,以在紫外光下觀察到DNA或RNA的條帶。3.**樣品提取**:-確定目標DNA或RNA條帶后,使用干凈的工具(如切割器或移液槍)從凝膠中切割出含有目標分子的凝膠片段。4.**磁珠準備**:-根據磁珠試劑盒的說明書,準備磁珠。通常包括磁珠的重懸和可能的表面修飾,以確保它們能夠特異性地結合目標核酸。5.**樣品與磁珠混合**:-將切割出的凝膠片段轉移到含有磁珠的溶液中,溫和地混合以促進磁珠與核酸的結合。6.**磁分離**:-將含有磁珠和核酸的混合物置于磁分離架上,利用磁場使磁珠快速聚集在管底,從而實現與溶液的分離。7.**洗滌**:-移除未結合的溶液,向磁珠上加入洗滌液,再次進行磁分離以去除雜質。將合成的gRNA與Cas9 NLS蛋白混合,形成復合物。由于Cas9 NLS蛋白兩端都有NLS,有助于復合物快速進入細胞核。
pA-Tn5轉座酶是一種經過改造的高活性Tn5轉座酶,與ProteinA融合,形成一種新型融合酶,應用于CUT&Tag技術中,用于研究蛋白質與基因組DNA的相互作用。這種融合酶具備以下特點:1.**高活性**:pA-Tn5轉座酶是超高活性的突變形式,體外轉座效率比野生型高1000倍。2.**ProteinA融合**:pA-Tn5轉座酶的N端結構域為ProteinA的一部分,可以與免疫球蛋白的Fc區相互作用,特別是與大多數哺乳動物的IgG結合。3.**Tn5轉座酶活性**:C端結構域為Tn5轉座酶,能夠特異性識別轉座子兩端反向重復的ME序列(MosaicEnd),并在形成轉座復合體后隨機插入靶DNA中。4.**應用廣**:適用于CUT&Tag技術、高通量測序建庫、ATAC-seq等,特別適用于早期胚胎發育、干細胞、以及表觀遺傳學等研究領域。5.**操作簡便**:pA-Tn5轉座酶的使用簡化了實驗步驟,可以在一步反應中實現DNA片段化和接頭連接,從細胞到二代測序文庫的轉化過程需9小時。6.**低細胞投入量**:CUT&Tag技術允許從低至60個細胞的樣本中獲得結果,甚至可以應用于單細胞水平的研究。7.**高質量結果**:pA-Tn5轉座酶的使用可以保證DNA片段化,同時獲得的蛋白純度高、核酸殘留低。在一項研究中,比較了具有不同NLS融合的Cas9蛋白和Cas9 mRNA在斑馬魚基因組編輯中的效率。Recombinant Human TNFRSF19 Protein,hFc Tag
在目標蛋白的C末端添加His標簽和Avi標簽。有助于通過親和層析進行蛋白純化,而Avi標簽則可以用于生物素。Recombinant Mouse BD-2
核酸(DNA和RNA)的可視化是分子生物學實驗中的一項基本技術,用于檢測和分析核酸的存在、大小、數量和純度。以下是幾種常用的核酸可視化方法:1.**紫外線(UV)檢測**:-利用核酸分子對UV光的吸收特性,特別是在260nm波長下的吸收峰。-常用的UV檢測方法包括凝膠電泳后的凝膠成像系統,可以觀察到凝膠中DNA或RNA的條帶。2.**熒光染料染色**:-使用熒光染料,如溴化乙錠(EthidiumBromide,EB)或SYBRGreen,這些染料可以與核酸結合并在特定波長的光照射下發出熒光。-EB常用于凝膠電泳后的DNA可視化,而SYBRGreen可用于實時定量PCR(qPCR)中DNA的檢測。3.**凝膠電泳**:-通過將核酸樣品加載到凝膠中,利用電場驅動核酸分子按大小分離,然后通過上述的UV或熒光染料進行可視化。4.**紫外交聯**:-某些熒光染料,如BODIPY或Cy5,可以通過紫外交聯直接結合到核酸上,提供更高的靈敏度和特異性。5.**銀染**:-一種比EB染色更靈敏的染色方法,通過銀離子與核酸的結合,然后還原成金屬銀,形成可見的黑色或棕色條帶。6.**化學發光檢測**:-使用特定的化學發光底物,如熒光素或魯米諾,與核酸結合后,在氧化過程中產生光信號。Recombinant Mouse BD-2
Recombinant Human NAP-2/CXCL7
Recombinant Human Coagulation factor XI Protein
Recombinant Human CDCP1 Protein
Recombinant Human FGFR2 alpha(IIIb)(hFc Tag)
Recombinant Biotinylated Mouse TNFSF15 Protein
Recombinant Cynomolgus PVRIG Protein
Recombinant Human IFN-gamma Protein
Recombinant Human PSGL-1 Protein
Recombinant Mouse MDL-1/CLEC5A Protein
Recombinant Human Epiregulin