IdeSProtease是一種免疫球蛋白G(IgG)特異性降解酶,它能夠在IgG的鉸鏈區下方的一個特定位點進行切割,產生F(ab')2和Fc片段。這種酶是通過大腸桿菌(E.coli)表達系統重組表達生產的,并且經過分子改造,使其具有更高的酶活和更廣的底物特異性。在生產過程中,確保IdeSProtease符合GMP(良好生產規范)標準,需要進行以下步驟:1.**分子改造**:通過分子生物學技術對IdeS進行改造,增強其穩定性和比活性。2.**大腸桿菌表達系統**:利用大腸桿菌表達系統進行IdeS的重組表達,確保無動物源性成分,減少病毒污染風險。3.**純化**:通過高度純化過程,確保IdeS的純度達到≥95%。4.**酶活定義**:1個酶活力單位定義為在37°C條件下,30分鐘內酶切1μg重組單克隆IgG所需的酶量。5.**質量控制**:每批產品都經過嚴格的質量控制,以確保產品批間穩定性和高穩定性。6.**儲存條件**:采用適當的儲存條件,如-30℃至-10℃凍存,確保產品在有效期內保持活性和穩定性。7.**微生物學安全性檢測**:進行無菌檢測、體內有毒物質的檢測、抗生物質殘留檢測、宿主細胞蛋白殘留檢測和病毒安全性檢測,確保產品符合微生物學安全性要求。
在進行IdeSProtease的分子改造時,平衡酶的活性和穩定性是一個關鍵的挑戰。以下是一些策略,這些策略可以幫助研究者在提高酶穩定性的同時保持或甚至提高其催化活性:1.**定向進化**:使用定向進化技術進行多輪的突變和篩選,以獲得在所需條件下具有改進穩定性的酶變體,同時監測其催化活性,確保改造后的酶保持高效催化能力。2.**結構基礎的理性設計**:基于IdeSProtease的三維結構信息,識別可能影響穩定性和活性的關鍵氨基酸殘基,通過點突變或小肽插入來優化這些區域。3.**計算模擬**:利用分子動力學模擬和計算化學方法預測突變對酶穩定性和活性的影響,以指導理性設計。4.**糖基化修飾**:通過糖基化可以增加酶的溶解性和穩定性,但需注意不要干擾酶的活性位點或底物結合位點。5.**活性位點附近的柔性區域改造**:通過剛化柔性區域的策略提高酶的熱穩定性,同時保持活性位點的柔性以維持催化活性。6.**長距離相互作用分析**:研究蛋白質內部的長距離相互作用,識別影響穩定性和活性的遠程突變,通過這些突變優化酶的性能。7.**酶活性和穩定性的權衡分析**:通過實驗數據,分析酶活性和穩定性之間的關系,找到比較好平衡點。Recombinant Cynomolgus SPP1/OPN Protein,His Tag在MAGE-A3基因序列的C末端添加His標簽和Avi標簽序列。His標簽有助于通過金屬螯合親和層析進行蛋白純化。
EndoS糖苷內切酶在抗體藥物偶聯物(ADCs)的制備中發揮著至關重要的作用。EndoS是一種特異性的內切糖苷酶,它能夠從IgG重鏈的N-糖基中切割N-連接的糖鏈。這種特異性使得EndoS在改造抗體的糖鏈結構時非常有用,尤其是在開發定點ADCs時。在ADCs的制備過程中,EndoS的作用主要體現在以下幾個方面:1.**糖鏈切割**:EndoS能夠特異性地水解抗體Fc片段上的N-糖鏈,為后續的糖鏈改造和藥物偶聯提供條件。2.**糖鏈改造**:EndoS可以用于去除抗體上的原有糖鏈,然后通過酶的催化作用,將特定的糖鏈結構重新連接到抗體上,實現糖鏈的定點修飾。3.**定點偶聯**:通過EndoS的催化作用,可以將小分子細胞毒藥物通過特定的糖鏈結構“一步”定點連接到抗體的糖基化位點,簡化了ADCs的制備流程。4.**提高ADCs的均一性和穩定性**:EndoS介導的定點偶聯技術有助于獲得結構均一性更好、穩定性更高的ADCs,這對于提高藥物療效和減少副作用至關重要。5.**增強療效**:利用EndoS進行的定點偶聯可以提高ADCs的體內瘤抑制活性,即使在低載藥量的情況下也能保持高效的抗瘤效果。
EndoS酶在抗體藥物偶聯物(ADCs)研究中的具體應用主要體現在糖鏈定點偶聯技術方面。根據上海藥物研究所的研究進展,EndoS酶被用于實現定點ADC化合物的“一步”制備,這是一種新穎的糖鏈定點ADC制備策略。該策略利用了新穎截短型糖結構的藥物-連接子和野生型糖苷內切酶EndoS2,將小分子細胞毒藥物直接定點連接到抗體糖基化位點,從而克服了傳統糖鏈定點ADC制備策略的限制。具體來說,研究人員通過篩選發現,EndoS2酶可以將二糖底物LacNAc轉移至去糖抗體N297位糖基化位點,并且LacNAc半乳糖6號位唾液酸化修飾不影響EndoS2的轉糖基化活性。這一發現使得EndoS2和LacNAc的組合可以直接實現野生型抗體的糖基化改造,且EndoS2對多樣化LacNAc修飾的兼容性,可以高效獲得多樣性功能修飾的巖藻糖化或去巖藻糖化的糖工程抗體。此外,研究人員還利用疊氮化修飾的LacNAc底物實現了抗體糖基化位點的“一步”疊氮化修飾,并通過點擊化學反應偶聯藥物-連接子,實現了“兩步”制備得到定點ADC化合物。
酵母重組表達的N-糖苷酶F(PNGaseF)是一種酰胺水解酶,具有以下特點:1.**高效性**:PNGaseF是去除幾乎所有N-連接寡糖從糖蛋白中有效的酶法方法。它能夠在幾分鐘內快速且無偏倚地釋放所有的N-糖鏈,適合后續的色譜或質譜分析。2.**重組酶**:該酶是重組的酰胺酶,能夠從高甘露糖、雜合和復雜寡糖中切割內GlcNAc和天冬氨酸殘基之間的連接。3.**純度**:純度達到95%以上,通過SDS-PAGE和完整ESI-MS進行確定。4.**儲存穩定性**:在含有50%甘油的儲存緩沖液中,好的活性和穩定性可維持長達24個月。5.**使用條件**:可以在原生或變性條件下使用,對于變性條件下的去糖基化,建議添加NP-40以解除SDS的抑制作用。6.**比活性**:具有高達100000U/mL的比活性。7.**His標簽**:產品帶有His標簽,常用于抗體及其相關蛋白的完全去糖基化。8.儲存條件:-25~-15℃保存,有效期1年。9.**無甘油版本**:還提供了無甘油版本的PNGaseF,這有助于在HPLC和質譜分析中獲得結果。10.**酶活定義**:1個酶活力單位指在10μL的反應體系中,37℃條件下1小時從10μg變性RNaseB中除去超過95%的碳水化合物所需要的酶量。這些特點使得酵母重組表達的PNGaseF成為研究和分析糖蛋白糖鏈結構的重要工具。Pfu DNA Polymerase的熱穩定性和保真性使其在優化PCR條件時更為靈活,比如在GC含量較高的模板中。Recombinant Human PRL-3/PTP4A3 Protein,His Tag
UDG在結構上屬于單功能DNA糖基化酶,它通過沿著DNA鏈滑動,識別尿嘧啶分子,進行堿基切除。Recombinant Human CCR8 Protein-VLP
PNGaseF,Recombinant,ExpressedinYeast(酵母重組表達N-糖苷酶F)的高效性體現在以下幾個方面:1.**高比活性**:該酶具有高比活性,例如可達到750,000U/mL,這意味著單位體積的酶可以進行更多的反應循環,從而提高去糖基化的效率。2.**快速反應**:與傳統PNGaseF相比,某些優化版本的PNGaseF,如FastPNGaseF,能在更短的時間內完成去糖基化,要10分鐘。3.**徹底去糖基化**:該酶能迅速且無偏好性地去除幾乎所有N-連接的寡糖,包括高甘露糖型、雜合型和復雜型糖鏈,確保了去糖基化的徹底性。4.**直接分析**:去糖基化后的產物可以直接用于下游的色譜或質譜分析,無需額外的純化步驟,從而節省時間并提高分析的效率。5.**適用性**:適用于多種糖蛋白的去糖基化,包括抗體、免疫球蛋白、融合蛋白以及其他糖蛋白,增加了該酶的實用性。6.**優化的反應條件**:可以在變性或非變性條件下使用,增加了實驗設計的靈活性,并允許在不同條件下優化去糖基化效率。7.**簡化的實驗流程**:由于酶的高效性,實驗流程得以簡化,減少了反應體積和酶的使用量,同時保持了反應的靈敏度和重復性。
Recombinant Human NAP-2/CXCL7
Recombinant Human Coagulation factor XI Protein
Recombinant Human CDCP1 Protein
Recombinant Human FGFR2 alpha(IIIb)(hFc Tag)
Recombinant Biotinylated Mouse TNFSF15 Protein
Recombinant Cynomolgus PVRIG Protein
Recombinant Human IFN-gamma Protein
Recombinant Human PSGL-1 Protein
Recombinant Mouse MDL-1/CLEC5A Protein
Recombinant Human Epiregulin